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Three algorithms for the numerical inversion of the Laplace transform are considered, for solving
specific applied problems of wave dynamics. Comparing the algorithm based on the shifted Lagendre
polynomials with the standart solutions shows that there exists an optimal number of terms in
expansions. It is also established from the consideration of various algorithms, including modern ones,
that the accuracy of all algorithms of numerical inversion decreases with increasing time t (with
decreasing in the transformation parameter p in the complex plane). These two conclusions are a
consequence of the incorrectness of the inversion Laplace transform problem. The application of the
expansion method in the sine arcs to the solution of the initial-boundary value problem (IBV problem)
of the study of the propagation of pulse pressure waves in blood vessels is presented. It is based on the
equations of the cylindrical shell and blood pressure, and includes the matching conditions at the
junction of the vessels, excitation of the pulse pressure wave, its propagation to the junction, reflected
and transmitted waves. Application of the same method is presented for the problem of evolution of the
free surface of water waves due to local bottom excitation sources that are repeated in time.

Key words: Laplace transform, numerical inversion, IBV problem, algorithm, wave, dynamics, pulse
pressure.
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Po3riissHYyTO TpH QJITOPUTMH 4YHCEJIBHOTO OOepHEeHHs nepeTBopeHHs Jlamnaca aist po3B’si3aHHs
KOHKPETHUX MPUKJIaJHUX 33/1a4 AWHAMIKU XBHJIb. [[OPIBHSHHS aJrOPUTMY, 3aCHOBAHOTO Ha 3MIIIEHUX
nojinoMax Jlarepa, 31 craHJapTHUMH PO3B’S3KaMHU IOKa3ye, 10 ICHYE ONTHMAJIbHE YHCIIO YICHIB Y
po3kiangax. 3 po3rAAy Pi3HUX aJrOPUTMIB, Y TOMY YHCI Cy4aCHHX, BCTAHOBJICHO, II0 TOYHICTH BCIX
QITOPUTMIB YHCENILHOI 1HBEpCii 3MEHIIYEThCS 31 30UIBIICHHSAM Yacy t (31 3MEHIICHHSIM Hapamerpa
MEPETBOPEHHS P B KOMILIEKCHI# muiommuHi). 1li 1Ba BUCHOBKM € HACHIJKOM HEKOPEKTHOCTI MpoOsieMH
neperBopenHst Jlammaca. HaBepeHo 3acTocyBaHHS METOAYy PpO3KJIQJ@HHS IO Jyrax CHHYCIB J10
PO3B'I3yBaHHsI TIOYATKOBO-KpaioBoi 3amaui (IBV problem) nocnijkeHHs TOMIUPEHHS XBHJIb
ITyJIbCOBOTO TUCKY B KPOBOHOCHHUX CyJMHaX. BoHa 3acHOBaHa Ha PiBHSAHHAX LMITHIPUYHOI OOOJIOHKH i
KPOB'SSHOTO THCKY 1 BKJIFOYa€ YMOBH CIPSDKCHHS Ha CTHKY CYIHH, 30Y/KCHHS XBMJI IMITYJIbCHOTO
TUCKY, 1I TOIIMPEHHS A0 CTUKY, BimOWTI i mpoximHi xBwii. IIpexcTaBieHo 3acTOCyBaHHS Takoro X
METOMy JUIS 3a/a4i €BOJIIOLII BUIBHOI IMOBEPXHI XBHJIb Ha BOAI, 0OYMOBIICHOI JIOKAJbHUMH JOHHUMH
JDKeperTaMu 30yDKEHHS, SIKi TOBTOPIOIOTHCS B Haci.

Knmiouosi cnosa: nepemeopenns Jlannaca, uucenvhe obepuenns, IBV (nouamxoeo-kpatioéa 3adaua),
aneopumm, Xeui, OUHAMIKA, NYIbCOGUL MUCK.

1. INTRODUCTION

DOI: 10.26661/2413-6549-2018-2-13

The efficiency of solving problems in mechanics and physics on the basis of the Laplace transform
is well known [1-3]. The Laplace transform of a function f (t) is defined by the operator [4, 5]

DizuKko-mamemamuuni HAyKu

f(t)e Pdt

F(p)=

O —8

(1)
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for a complex parameter p =o +iz under the assumption that F(p) is the analytic function in a
domain Re p > o, that F(p) converges uniformly in this domain F(p)— 0 relative to arg p for
p — o and that in the case of absolute convergence (1) along the straight line at VRe p > o, there
exists an inversion operator (the Riemann-Mellin integral)

1 o, +io

ft)=o- [F(pke"dp. @

o, —io
The inverse problem consists in finding the solution f(t) of the integral equation of the first kind

(1), where F(p) is a known function of the complex argument p. The kernel e ™ is a smooth

function of t and p, the averaging operation f with weight e ™ can substantially smooth out the
singularities of the function. The problem of restoring all local irregularities of f(t) requires the
involvement of approaches sensitive even to insignificant behavioral features.

The function f (t) is unstable with respect to small variations of F(p). Consequently, the problem
of inversion, as the problem of finding the solution f(t) of the integral equation of the first kind

(1), belongs to the number of ill-posed problems: solutions are possible not for all quantities of
numerical or functional parameters, and weak variations of these parameters can lead to large
variations of the solution. This is the main reason that limits the capabilities of all known algorithms
of inversion (2).

This paper shows the verification of the expansion method for shifted Legendre polynomials. An
application of the method of expansion in even sine arcs to the solution of the IBV problem are
given for propagation of pulse pressure waves in blood vessels and water wave generation by local
bottom sources of excitation. In addition, some new algorithms are also described.

2. THE METHOD OF EXPANSION IN ORTHOGONAL SHIFTED
LEGENDRE POLYNOMIALS [6]

The introduction of the transformation e™ = ¢ takes the interval (0,c0) of a variable t into an
interval (0,1) of a variable ¢ . After this expression (1) takes the form

1

F(p)=]f(¢)Pde, (3

0

and the function f({) (2) is represented in the form of a convergent series in polynomials
orthogonal on a segment [0,1] which are given by the shifted Legendre polynomials Pn*(g)

H(0)=3 2n+1a,P(¢), a = alF(k+1) (@)

n=0 k=0

where

P(£)= (—1)“264“);& ol — <_1)k(”j (n+k)

k) nlk!
The function F(k +1) in (4) with integer argument corresponds to the function F(p) of (1).

The coefficients a, on the basis of (3) and (4) are calculated in a finite number of equidistant points

k along the real axis of the transformation parameter p (Fig. 1). Calculations were carried out for
the number of terms of the series 5, 6, ..., 10, and the number 10 was found to be optimal for

Bicnuxk 3anopizbkozo nayionanvhozo ynisepcumemy MNe 2,2018



126

Visnik Zaporiz'kogo nacional’nogo universitetu. Fiziko-matemati¢ni nauki

approximation with the number of significant digits equal to 9. In all cases, the accuracy increases

at n up to 10.
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Fig. 1. The results of numerical inversion by the shifted Legendre polynomials:
a) for a function linearly increasing, and then constant; b) for the Heaviside function

Similar results were obtained for table functions linearly or instantaneously increasing, and then
decaying exponentially.

On the basis of this algorithm, a number of IBV problems were solved in the theory of wave
propagation and diffraction including for a water hammer, the effect of a pulse on an elastic shell,
the generation of tsunami waves and others.

3. THE METHOD OF EXPANSION IN THE SINE ARCS

This method was proposed in [7] and is described in [2]. In this case, the solution is represented in
the form of a series

®(9)= icv sin(2v +1)9 (5)

v=0

under the condition that e =cos@, f(t)= f(—iln cos@} =d(9), p=(@2n+l)o, >0,
O
n=0,1,.... As a result, we obtain the linear system of equations to determine the coefficients

. 4 .0 42 0 £ L
C,:Cy==cf'(c),C,+C,=—af"(30), 2C,+3C,+C, = —of"(50), ....

T T T

It should be noted that the implementation of this algorithm essentially depends on the value of the
parameter o in (5), the optimal choice of which requires conducting numerical experiments.

Let us consider the problem of propagation of pulse pressure waves in blood vessels [8]. In this
case, a function that approximates the cardiac pulse is given in the form f (t)=te™.

The corresponding hydroelasticity problem is formulated as the IBV problem for differential
equations in three regions, including the matching conditions in two sections x =—x, and x=0, the

conditions at infinity for x ——oo and X — oo and also the initial conditions for t=0.

We consider two semi-infinite elastic cylindrical shells of constant, but different thickness, filled
with a inviscid incompressible fluid, ideally conjugated in a section x=0. The left shell occupies

the region Q (—0<x<0), the right shell — the region Q,(0<x<w). The left region
Q,(0<x<w) is divided into two subregions Q (- <x<x) and Q,(-x <x<0) by a cross

section x =—x, in which a pressure pulse f(t) propagating to the left and to the right at a time
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t =0 is specified. The pulse, reaching the junction of the shells x =0, generates the reflected wave
to the left and the passing wave through the junction to the right. The stress concentration in the
interface junction is of primary interest in the passage of the pulse, and here it is investigated on the
basis of the Laplace transform and the algorithm for numerical inversion. It is assumed that the
motion of the shells is described by the theory of Kirchhoff shells, and the motion of the liquid

inside the shells by a quasi-one-dimensional model.

The heart pressure pulse with a doubled amplitude is applied on the left on some distance from the
junction of the vessels. One half of this pulse spreads to the left. Another part that also very

accurately approximates the heart pulse f(t) runs to the right. After reaching the junction of the
vessels this pulse partially reflected from the junction and partially transmitted through to the right.

For each of the three regions, a system of differential equations for radial displacement w and for

pressure p as functions of time t and axial coordinate x is written.
The motion of the shell is described by a differential equation [9]

Da4—W+E—hW+ hazw—f)
P S

and fluid motion by the system of equations [10]
O w_r 1% . Fop ou_ 10p

a2 2p. 0% T 8oxt ot p, Ox
The matching conditions are of the form:
on the interface x =—x, (impulse application)
f)k,l_ﬁh:f(t)’ U,,]—tho, M—tho,

o, oW, _ o’w,  d*w, _0 o’w, o'w,

x oxo oo T axax
at the interface x =0 (vessel junction)

A A

P — Py =0, u, —Uy =0, W, =Wy =3 — &,

2 2 3 3
W w w w
My My _o p, I p M _g p IV _p W _g
OoX  OX OX OX OX OX
The results calculations for real vessel parameters are presented on Fig.2
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Fig. 2. Concentration of shear force at x=0
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Fig. 3. Free water surface at different distances r” =r/r, from epicenter 7 =0 in the case of repeated excitation time
t, =2 (r, is the radius of convex axially symmetric bottom lift, t* :L/gHo/r0 , H, is the water height)

The method was used in investigations of a free surface evolution at local bottom repeated in time
excitations for analysis of tsunami waves [11]. The results of calculations are presented in Fig. 3.

4. OTHER APPROACHES AND SOME RECENT ONES

We note the simplest approximation - the expansion in exponential functions [12], the Fourier-
Bessel expansion method [13], based on the representation of the solution in the form of Fourier-
Bessel expansions and the regularization of an ill-posed problem [14]. The coefficients of such an
expansion are presented in the form of well-convergent series, which makes it possible to calculate
the values of the smooth original function with high accuracy.

N
The function f(t) is represented as a series f,(t)=> Ae™ where the values A are
i=1

undetermined coefficients, and the quantities t, are given positive constants, so that fA(t) is an

approximate representation of the function f(t). The total quadratic error, determined by the

difference between f(t) and f,(t) is written in the form EzzT[f(t)—fA(t)Tdt. The

coefficients A are determined from the condition of the minimum of tr:e total root-mean-square

error T[f (t)- fA(t)]2 edt =0. These relations form a system N of linear algebraic equations
0

for the determination of N of unknown coefficients A It is established from the calculations that
acceptable accuracy can be achieved in a small interval of variation t.

Numerous papers have been devoted to the investigation of the numerical inversion of the Laplace
transform. In [6] an application of the Chebyshev, Laguer and Jacobi polynomials was considered,
which were subsequently applied in [15, 16]. We note some asymptotic methods, the numerical
inversion with the use of Laguer polynomials was considered in [16], Jacobi polynomials in [15], in
problems of mechanics and physics in [16-18].

A characteristic feature of all methods of numerical inversion is that they are well realized for large
parameters of the Laplace transform |p| <o, |p|>>1, that is, near an infinitely distant point in the

complex plane p=Rep+ilmp. As the value |p| decreases, all methods of numerical conversion
deteriorate.

An alternative approach to the numerical inversion of the Laplace transform based on Fourier
expansions [19] was used to solve the IBV problem of thermoelasticity for a hyperbolic system of
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equations involving a higher-order hyperbolic operator (fourth) than the hyperbolic heat transfer
operator (the second) taking into account relaxation time [20].

We note the method of numerical inversion presented in [21]. This method has been used in [22] to
solve a new IBV problem on a finite interval for a hyperbolic equation with relaxation parameter
(parabolic operator). The original is determined by the formula

5S4

; 1
= 3 +7Z.Iky 77k =(—1)k§k1 go:zl §k :1, lSkSM, é:ZM:_I
§2M—k :§2M—k+l+27M C:\(/., O<k <M.

where S,

The value of the parameter M in (15) was assumed to be 16, which, according to [23], gives
accuracy in nine significant digits. The superscript L notes the Laplace transform.

5. CONCLUSIONS

Some methods of numerical inversion of the Laplace transform and their applications to the solution
of IBV problems have been considered. Algorithms, some comparisons with exact solutions,
estimates of accuracy are given. The results of the study of the propagation of pressure pulse waves
in blood vessels and the generation of waves on water by underwater earthquakes are presented.
Some recent approaches have been noted.
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MO310BXKXHINM MOAYJIb ITPYKHOCTI BOJIOKHUCTOI'O
KOMIIO3UTA 3 IEPEXIITHUM HIAPOM

CronsipoBa A. B., acmipanrt, ['peGentok C. M., a. T. H., nonieHT, Kinumenko M. 1., k. ¢.-M. H., TOTIEHT
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[Tpu po3B’si3aHHI 33/1a4 MEXaHIKM KOMIO3UTIB 3pyYHO BUKOPHCTOBYBATH MOJIENb KOMIIO3UTA y BHUIJISI
CYLUIBHOTO OJTHOPIZIHOTO CEPe/IOBHINA 3 €PEKTUBHUMH CTAIMMHM, 11O 3/IEKBAaTHO BiIOOpaXaroThb HOTO
HaWOUIBII CYTTEBI XapaKTEPUCTHKH. 3aj1adi BU3HAUEHHS HANPYKEeHO-1e(OPMOBAHOTO CTaHy KOMIO3UTa
0a3yroThCSl Ha MPUIYIIEHHI, [0 3’€HAHHS MaTPHIl 3 BOJIOKHOM Ma€ YiTKy T'PaHHUIII0 PO3IOALTY, L0
oOMe)ye KOMIIOHEHTH KoMmmo3uTa. OJHAaK BaXKIMBY POJIb y MEXaHIill KOMIIO3HTIB Bigirpae eQekt
HElJIeaJIbHOTO KOHTAKTy MK KOMIIOHEHTaMH, OJHHUM 13 SIKMX € HasBHICTb IIEPEXiIHOTO IIapy.
OtpumMaHo (GopMyIly 3aJICIKHOCTI MO3JOBKHBOTO MOJIYJIS MPYXKHOCTI JJII TPAHCTPOITHOTO MaTepiamy,
IO MOJIEJIIOE KOMIIO3UT, Bl MPYKHUX XapaKTePUCTHK MATPHIl, BOJOKHA, MEPEXiJHOro wiapy, o
YTBOPIOETHCSI MK MATPHIICIO Ta BOJIOKHOM, Ta 00’ €MHOI JOJIi KOXKHOTO 3 HUX y KOMITO3HTI. [{s mporo
PpO3B’s3aHO JIBi KpaioBi 3a/1a4i: PO MO3I0BKHE PO3TIATYBAHHS HECKIHYEHHOTO CKIIQJICHOTO 130TPOITHOTO
TPUIIAPOBOrO IMIIHAPA Ta IIO3/0BXKHE DPO3TATYBaHHS HECKIHYEHHOTO TPAHCTPOIHOTO CYIJIBHOTO
wutiHapa. st po3s’s3yBaHHSI CUCTEMH PIBHSIHb PIBHOBAard B NEPEMIIICHHAX y IMIHAPUYHIN cucTeMi
KOOpJIMHAT y poOOTi BUKOPHCTaHI HACTYIHI NPUITYLICHHS: MaTepiajll MaTpHll, NepexijHoro mapy i
BOJIOKHA € i30TPOIHUMHM, IUIOLIMHY 130TPOMil CHiBHaJal0Th Ta NMEPHEHAMKYJISIPHI OCi BOJIOKHA; 3aja4a
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