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AN ARC CRACK AT THE INTERFACE BETWEEN TWO
ELECTROSTRICTIVE MATERIALS

Hodes A. Yu., Loboda V. V.

Dnepropetrovsk National University,
Gagarina, 72, Dnepr, 49050, Ukraine

alinegg@mail.ru, lobvv@ua.fm

Exact analytical solution for an electrostrictive plane with circular electrostrictive inclusion and an arc
crack at the materials interface under the influence of general mechanical and electrical loadings at
infinity is obtained. It is assumed that both materials are isotropic and linear elastic, the crack faces
don’t interact with each other and are permeable to an electric field. The problem is considered as an
uncoupled problem of electroelasticity. Solution of electrostatics problem is obtained by complex
potentials method. Boundary problem of electroelasticity for four complex potentials that are analogues
of Kolosov-Muskhelishvili potentials is reduced to the problem of linear relationship at the crack.
Unknown constants in general solution of this problem are determined from the boundary conditions at
infinity and the restrictions imposed on stresses and displacements. Analytical expressions for the stress-
strain state in the whole plane, in particular for the crack opening, normal and shear stresses at materials
interface and the stress intensity factors at the crack tips, are found.
Key words: electrostriction, arc crack, problem of linear relationship, stress intensity factor.
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AYTI'OBAS TPEILIMHA HA T'PAHUIIE PA3JIEJIA IBYX
IJIEKTPOCTPUKIIMOHHBIX MATEPHAJIOB

TI'ogec A. 1O., JIobona B. B.

J[Henponemposckull HaYUOHANbHBIU YHUBEpCUmMEN!,
npocn. I'acapuna, 72, 2. [{lnenp, 49050, Yxpauna

alinegg@mail.ru, lobvw@ua.fm

IlomyyeHO TOYHOE aHAIUTHUYECKOE pELIeHHEe A 3JIEKTPOCTPUKLHUOHHOM IIOCKOCTU C KpPYTrOBBIM
JIEKTPOCTPUKIIMOHHBIM BKIIIOYEHHEM U JYyrOBOW TPEIIMHON Ha TPaHMIE pas[elia MaTepualioB IOA
JCUCTBUEM TIPOU3BOJIBHBIX ~MEXaHMYECKUX W JJIEKTPUYECKHX HArpy3oK Ha OCCKOHEYHOCTH.
ITpuanmaetcs, yTo 00a MaTepuana SIBISIOTCA N30TPOIMHBIMHU U JIMHEHHO YNPYTUMH, a Oepera TPEIMHBI
HE B3aUMOJCUCTBYIOT APYT C IPYTOM U SBJISIOTCA MPOHMLAEMBIMH JUIS JIEKTPUUYECKOro mois. 3ajaua
paccMaTpuBaeTCsl Kak HECBS3aHHAs 3a7ada JJICKTPOYNPYTOCTH. PemieHme 3agaddl 3JIEKTPOCTATHUKHU
MOJIy4EeHO C TIOMOIIBI0 METO/Ia KOMIUIEKCHBIX MOTEHIIUANOB. ['paHNuHas 3a1a4a 3JIeKTPOYIPYTroCcTH A
YEeTBIPEX KOMIUIEKCHBIX IIOTCHIMAJIOB, SABILIIONIMXCS aHaJoramMu TmoTeHnuanoB Koiocosa-
MycxenuIBuIz, CBEACHA K 3aJjaue JUHEHHOIO CONpsDKEHUS Ha TpemuHe. HensBecTHbIe KOHCTaHTHI U3
o0mmero pemeHuss 3TOH 3aJauyn  ONpEIETICHBl W3 TPAHWYHBIX YCIOBHM Ha OECKOHEYHOCTH H
OTpaHMYEHUIl, HAJIOKEHHBIX Ha HaNpsDKEHUs U nepemerieHus. HalineHsl aHanuTH4ecKHe BBIPAXKEHUS
JUISL  HanpsDKEHHO-Ie(OPMUPOBAHHOTO COCTOSHHS BCEH IUIOCKOCTH, B YAacTHOCTH MJISI PAcKPBITHA
TPEIIMHBI, HOPMaJIBHBIX M KacaTeNbHbIX HANpsOKEHWH Ha TpaHulle paszfena cpel u kKoadduimeHToB
WHTEHCHBHOCTH HANPSDKEHUH B BEPIIMHAX TPEIIHHBL.

Knouesuvie crosa: anexmpocmpuxyus, 0y206as mpewjund, 3a0a4a IUHEUHO20 CONPAdCeHUs, Kodgduyuenm

UHMEHCUBHOCTU HANPAICEHUIL.
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Jlninponempoecvkuii nayioHanebhull yHigepcumem,
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OTpuMaHO TOYHHWH aHANITHYHUA PO3B 30K MJIS EJICKTPOCTPUKIINHOI IUIOMMHH 3 KPYTOBUM
CJICKTPOCTPUKI[ITHMM BKJIFOUCHHSM 1 JYrOBOIO TPINIMHOK HA MEXI MOAUTy MarepiaiiB IMix i€
JOBUIBHUX MEXaHIYHHMX Ta €JIeKTPUYHUX HaBaHTa)XKEHb Ha HECKIHYEHHOCTI. BBakaeThbcs, 1mo oOuisa
Marepiaiy € 130TPONHUMHU Ta JiHIHHO NPYKHUMH, a Oeperu TPIlMHN HE B3a€MOIIOTH OJMH 3 OJTHUM Ta
€ TPOHMKHMMH JUIl €JEeKTPUYHOrO TMoJs. 3ajavya po3risigaeThes SIK  HE3B's3aHa  3ajada
eJIEKTPONPYKHOCTI. PO3B’5130K 3a/1aui eNEeKTPOCTATHKH OTPHUMAHO 32 JOIIOMOTOI0 METO/1Y KOMIUIEKCHUX
MOTeHINaniB. ['paHUYHY 3a7ady eIeKTPOIPYKHOCTI IS YOTHPHOX KOMIUICKCHUX MOTCHINAMIB, SAKi €
aHanmoramu TnoTeHmianie KomocoBa-MycxeminiBir, 3BeIeHO OO 3aJavi JTHIHHOTO CIPsHDKEHHS Ha
TpinmHi. HeBiloMi KOHCTAHTH 3 3arajibHOTO PO3B’S3KY 1€l 3aja4i BU3HAYEHO 3 TPaHUYHHUX YMOB Ha
HECKIHYEHHOCTI Ta 0OMEXEHb, [0 HAKJIAJCHO Ha HAINPY)KCHHS 1 MepeMilieHHs. 3HaiIeHO aHaiTHIHI
BUpa3u JJIsl HAIpPYKEHO-Ie(OPMOBAHOIO CTaHy BCi€l IJIOMIMHM, 30KpeMa AJsi PO3KPUTTS TPILMHHU,
HOpMAIIFHUX 1 JOTHYHUX HAMpPYXEHb HA TPaHUII MOIUTY CEPEeIOBHIN Ta KOe]Iili€HTIB iHTCHCHBHOCTI
Harpy)XeHb y BEPIINHAX TPILIMHH.

Kmiouosi  cnosa: enekmpocmpuxyis, Oy206a mpiwuna, 3a0a¥a JAIHIUHO20 CHAPSJICEHHs, Koegiyienm

IHMEHCUBHOCI HANPYHCEHD.

INTRODUCTION

Electrostrictive materials, in particular ferroelectric relaxors, become widespread in modern
technologies because for these relaxors electrostrictive effect is close to the piezoelectric one. As
described in [1], cracks may appear in electrostrictive materials under the action of large electrical
and mechanical stresses. This causes the importance of studying of cracked electrostrictive
materials behavior under the action of electrical and mechanical loads.

In general case constitutive equations of electrostrictive materials are quite complex and require
solving of the coupled electroelasticity problem that is associated with considerable mathematical
difficulties. However, in the case of small deformations the constitutive equations can be simplified
so that the electroelasticity problem becomes uncoupled. For this case an analogue of Kolosov-
Muskhelishvili equations [2] that takes into account electrostriction was developed in [3]. The
electrostrictive body with an arc crack under the action of electrical load at infinity parallel to the
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crack axis of symmetry is analyzed in the article [4]. The homogeneous electrostrictive plane with
an arc crack under the action of arbitrary electrical and mechanical loads at infinity is considered in
[5] and [6]. Stress intensity factors for electrostrictive fibrous composite with an arc-shaped
permeable interface crack under electric loadings are found in [7]. Nevertheless, general stress-
strain state, especially crack opening, of electrostrictive composite with an arc interface crack under
the action of arbitrary electrical and mechanical loadings has not been considered yet. Thereby
important point related to the possible appearance of the crack faces contact zones has not been also
investigated.

Much more works are devoted to investigation of arc cracks in electrically passive materials.
Firstly, an arc crack in elastic plane was considered by Muskhelishvili [2]. His method was
extended to the case of different materials by England [8]. Method designed by England was used
for investigation of interfacial arc crack under the action of arbitrary loading at infinity [9] and at
the crack [10]. Partially debonded circular inclusion was also considered by means of finite
elements method in [11]. Stress intensity factors of arc crack between homogeneous cylinder and its
coating are obtained from system of singular integral equations in [12]. A plane containing the
system of partially debonded circular inclusions is considered in [13] using superposition principle
and general displacement solution.

A contact problem for the crack in a homogeneous plane [14] and for the crack between matrix and
inclusion [15] was firstly considered by Chao and Laws. A contact problem for interfacial arc crack
under the action of arbitrary loading at infinity was resolved using singular integral equations in
[16]. Closure of an arc cracks in homogeneous material and its influence on stress intensity factors
are analyzed in [17] using boundary elements method. Contact zones that arise in vicinity of
interfacial arc crack tips are investigated also in [18] and [19] using boundary elements method.

In the present article an electrostrictive plane with circular electrostrictive inclusion and an arc
crack at materials interface under the influence of arbitrary mechanical and electrical loadings at
infinity is considered. Electrostatics boundary problem for three unknown complex potentials is
resolved by expanding these functions in Laurent series. Boundary problem of electroelasticity for
four complex potentials that are analogues of Kolosov-Muskhelishvili potentials is reduced to the
problem of linear relationship using the method developed by England [8]. Solution of this problem
is obtained by well-known methods of analytical function theory described in [2] and [20]. The
unknown constants in general solution of the problem of linear relationship are found from
boundary conditions at infinity, displacements uniqueness condition and finiteness of displacements
and stresses at origin.

Analytical expressions for stresses and displacements at the whole plane are obtained, and also the
formulas for crack opening and stress intensity factors at the crack tips are found. Crack opening,
normal and shear stresses at materials interface and stress intensity factors at the crack tips are
found for various material constants and loading at infinity. The figures that demonstrate the
influence of different parameters on the crack opening, stresses and the stress intensity factors are
presented.

FORMULATION OF THE PROBLEM
Infinite plane with a circular inclusion of radius R bonded along the whole interface except of the
arc r=R, |6'| < f is considered. We assume that crack faces cannot interact with each other and are

permeable to electric field. Mechanical properties of inclusion and matrix are characterized by shear
modules u,, u, and Poisson’s ratios v,, v, respectively. Electrostrictive properties of inclusion are

determined by constants a}l) and agl), and the matrix electrostrictive properties are determined by
constants a'? and al?’ [21]. The dielectric permittivities of inclusion, matrix and crack filler are
denoted as ¢,, ¢, and ¢, accordingly. Principal stresses N, and N, act at infinity; the angle
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between the direction of N, and the abscissa axis is «, . Also the electric field with intensity vector
of magnitude E, that forms the angle « with abscissa axis is applied at infinity (Fig. 1).

at, ', e |

Fig. 1

Analogues of Kolosov-Muskhelishvili equations for electrostrictive materials are [3, 21]

20 +10))-e 0 0)-20/)-v @) WD @HE)]. @

~(j s =(] ' ' 5 " Z— K; ' ' z "
Gr(rj)+'(7r(6]») :¢j(z)+(0j (Z)_ Lo, (Z)_;l//j(Z)+?J(Wj(z)wj(Z)_;Wj(z)wj z j’ )

. . E. 7
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where j=1referstoarea r<R and j=2 referstoarea r>R; &) = o) + "'V are pseudo total
alll —2¢
' H . ' ’ 2 1 i
stresses [4]; w!(z) are electrostatic complex potentials; W/(z)=|w!(2)]*; t=—
1-2v;)(a!” +2a)) 3-v.
K, =3-4v,, k, :—( J)( : ) for  plane  strain  and K= L
4(1—vj) 1+vj
(i) (i)
a,’\1-v. J+2a/’11-2v,
k, =—— by, )+ 200-2v)) for plane stress [21].
4
Boundary conditions for displacement and stresses at the interface are the following [4]:
GV +icY =52 +ic?, uY +iu)) =u® +iu? for r=R, p<lg <z, (4)
sV +igY =59 4i5? zg—ZCEWc'izi for r=R, |g<p, (5)
z

where w/(z) is an electrostatic complex potential of the crack, W,(z)=[w!(z)]*. The boundary

conditions at infinity can be presented as

N1+ Nz + Nl_ Nz e2i(aN—9)
2 2

Electrostatic complex potentials w;(z), wj(z) and w!(z) are determined by boundary problem of
electrostatics which solution is given in the next section.

o

+io? = for r—oo. (6)
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BOUNDARY PROBLEM OF ELECTROSTATICS
The equations of electrostatics are as follows [22, 23]:

Ap =0 for r<R, Ap,=0 for r>R, Ap,=0 for r=R, |[6<p, (7
E(l) =-Vo,, E® = -Vo,, E(C) =-Vo_, 8)
pDW — SlE(l), D@ — ng(Z)’ D© — ECE(C), 9)

where ¢,, ¢,, ¢, are the potentials of electrostatic field, EY, E®, E® are the intensities of

electrostatic field, DY, D®, D are the electric displacements in inclusion, matrix and crack
filler respectively.

Electrostatic boundary condition at infinity are
E® =i E,cosa+i,E,sina for r—o), (10)
and electrostatic boundary conditions on the interface have the form [22, 1-4]
DY.n=D?.n, EY.t=E®.t for r=R, g<lf<nr, (11)
DY.n=D?®.n=D".n, EY.t=E?.t=Et for r=R, |0<z, (12)

where n=i,cos@+i,sin@ is the vector of outward unit normal to the circle r=R and
t=—i,sin@+i,cos@ is unit vector tangent to this circle.

Complex potentials w;(z), wj(z) and w/(z) are determined as

£V EY =w(2) for r<R, EY+iED=w(2) for r>R.

Ei°) +iE§°) =w,(z) for r=R, |g<p,
where functions w;(z), wj(z) and w/(z) are analytical in the correspondent areas. This choice of
unknown functions allows satisfy Laplace equations (7) completely.

As the boundary conditions (11)-(12) are formulated for z=Re'’, they may be written by
presenting of complex potentials in the following way:

&, Re[zw; (z)] = &, Re[zw;j(z)], Im[zwj(z)]= Im[zwj(z)] for r=R, |g|<x. (13)
&, Re[zw[(z)]= &, Re[zw;(z)], Im[zw,(z)]=Im[zw}(z)] for r=R, |6|<z. (14)

It follows from boundary condition at infinity (10) that
W (2)——=—>E.e ™. (15)

Thereby boundary problem of electrostatics is reduced to determination of three unknown complex
potentials w;(z), wj(z) and w!(z) that are analytical in correspondent areas from boundary
conditions (13)-(15). Unknown coefficients of Laurent series for functions w;(z), w;(z) and w,(z)

are determined from these boundary conditions. Thus, the electrostatic potentials are given in the
following way:

_ . 2
W],'(Z) = 282 EOe_ia ! W; (Z) = EO (eia +—gl 82 ela R_j ’

- 2
& +é, &+e, 1
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_ ) 2
W’ (Z)Z EO i(‘c“l +gc e—ia + &~ & ela R_] (16)

¢ &\ & +e, g +e, 1°
PROBLEM OF LINEAR RELATIONSHIP

Functions ¢(z) and o(z) are introduced to satisfy boundary conditions at electrostrictive materials
interface (4) by the formulas

_[ R? _( R? R .1
15,01 (2)+ 112, el RV el W — 13 ,Ulk w,(z )Wz . lzl<R,
#(z)= ) ) i , (17)
(R (R _(R?) 1 (R
K0, (Z)+ HoZ @y (TJ + Ly, (Tj - IUZZlWl(Tj + Eluzklwl(z)wl(T]’ |Z| >R,

. gol(z)za{%ija{%:j;kzwz(zm( 1} on
o) 2| |-t %) o

The derivatives of these functions are analytical at the complex plane with cut along the arc r=R,
|fl< B except of infinity and zero points. Further the function F'(z)=¢(z)-Ka'(z),

(18)

K = tallmAry) I HK e o instead of ().
1+ 2 My + kS,

Boundary condition (5) specifies that 6% +i5% =6? +i5? at the crack. It follows from this
condition and equations (2) and (18) that »'*(z)= ' (z). Also formulas (17) — (18) specify that the
functions @'(z) and F'(z) are finite at infinity and have second-order poles at zero point. Since the

function a)'(z) is analytical at the whole complex plane except of zero point it is given by
expression

w'(z)= A0+%+i2. (19)

z

It follows from the boundary conditions (5) that the function F'(z) should satisfy the following
problem of linear relationship at the crack:

r+ r— R2 R2 Vi R2
F*(z)+AF" (z)= (,ul)(zW ( - ]Jrﬁ,uz;(lwl(T}r

o) 5 | o rr, (25 @)

Using formulas (16) equation (20) is transformed to the following form:
F'(2)+AF"(z)=f(z) for r=R, |g<p, (21)

where f(z)= C—Z}+C2 +C,2°%.
z

The stresses and displacements of the inclusion are expressed in terms of functions F(z) and o(z)
by the following way:
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- .. 1 R* - (R?
Y 4i6W = ——| (1 + K)o (2)+ F'(2) = o — Wy | — |+
M+ ALK Z Z

+(1_f__2j[(ﬂl +K)@ (2)+ F(2)-taz, ;‘_jw{%}

o st i) B )2t - ] (22)

zZ

~IF [ i j_zﬂz AW (Z)+ (s + yle)[%w;(f)[wl (;J-wl(z)} ;(lvvl(f)B. (23)

Stresses and displacements of matrix may be obtained from expressions (22) and (23) by replacing
suffix 1 by 2, 2byland A by 1/ 4.

SOLUTION OF PROBLEM OF LINEAR RELATIONSHIP
General solution of the problem of linear relationship (21) has the form [2, 20]

F'(z)= X;;Z)JL' ng(t(';()?i z)+ X,o(2)P,(2),

1 z—Re )\’ D D
X,(z)= __| . P(z)=B,z+B +L4=2 24
o \/(Z—Re‘w)(z—Reiﬁ)KZ—Re'ﬁ] o(e)=Biz By + 27 e

where y = Ig_ﬂ L isthe arc r=R, |§ < B that is bypassed counterclockwise. It should be noted
ya

_Re )’
that the branch of the function X,(z) that satisfies conditions (Z F;e iﬁ} ——1 and
z—Re

z
Jz-Re)z-Re?) "

Contour integral from (24) is given by the following expression [2]:

1 f (t)dt 1 (f(2) &,
z_m'{xg(t)(t—z):l+ﬂ[xo(2)_§b"z J

>1 is selected.
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therefore
, 1 3 2 D, D,
F (z):mf(z)+ X,(z)P(z), P(z)=B,z’+B,z +Blz+BO+7+Z—2. (25)

Expressions (19) and (25) contain seven unknown constants A,, A, A,, B,, B,, D, and D, that
need to be determined.

The function X,(z) is expanded in the following series near zero and a point at infinity:

28 () () ()
Xo(2)—=; >—eR L+ X024+ X022 +..), X,(2)—— >1(1+ Xy +X22 +X33 +j
z z z z
()
Because the function F'(z) is limited at infinity, B, =—ﬁC3, B, :%03. Therefore, this
+ +
function has the following representations near zero point and point at infinity:
1 e?” 1 e 1
F'(z) [ —-= D, |>-——(D,+X9D, )=+
@) ° 1+ 4 “ R ijz R B+, 2)2
2)8
(ﬁc —eR (BO+X1(°)D1+X§°)D2)J+..., (26)
, 1 , » 1
F'(z) ,(1+/1C2+xlc3+31j+(80+le1< >+x2c:3)z+..., @7)

, 1 ) \2 0 ' 1 0 0 0
where xl:m((xl( ¥ - x| )), X} =m(xf IX ) - x ).

It follows from finiteness of stresses and displacements at zero point, boundary condition at infinity
(6) and condition of displacements uniqueness that

_ » , 1
D, + XD, =Re (1, +K)A,, B, +B,X” +X,C, =z(,ul+K)Al,

ez}’,ﬁ 2 2ia 1
(ﬂl"'K)Az_ R D, ﬂlZZR Ese _mcl' A =0,
Vg &7 o) ©
— (1 +K)(A, + A, )+ 4B, + - (B, + XD, + XD, )=
2k &2E; & —& 1- 4
— + K ) 1 2 E2 C ﬂX,C
(:ul Hy l)(81+82)2 Y 4 ¢ 15, 1+
N, +N, kE; 1 ,
(ﬂ2+K)A)+Blz(ﬂz+/11’(2)( l4 - 240J_1+2C2_X1C3,
ez;/ﬂ 1 1 .
+K + D — C _ - R2E2e2la_
(,Uz )Az IR 2 2(14_2) 177 X, 0
N, -N, . g k,e&
—R? + UK 1 2 g2y | %2 4 72 %1 Ezem 28
(ﬂz H 2){ 5 (2 > 51+52J J (28)

As one can see, system of linear algebraic equations (28) fully determines the unknown constants.

DizuKo-mamemamuyHi HayKu ISSN 2518-1785 (Online), ISSN 2413-6549 (Print)



Visnyk of Zaporizhzhya National University. Physical and Mathematical Sciences 89

STRESSES, CRACK OPENING AND STRESS INTENSITY FACTORS

As it follows from (23), crack opening A =u® —u® is given by expression

r r

A=

2 Rele(F (2)-F*(2)), z=Re”, |6|<pB. (29)

Using equations (21) and (25) the expression (29) is transformed to the form

1+ 4 i 1+ 4 i .
A= Re(e™ | X (z)P(z)dz)= Re(e“F,(z)), z=Re", |§<p, (30)
24411, ( J. 0() () ) 210,11, ( 0()) ||
where
r —(z—Re™” v 1
Fo(2)=\/(Z—Re ﬂ)(Z—Reﬁ)(mj (p122+p22+p3+%j, p1=—3(1+ﬂ)03,
P, =— L R2X%c,, p,=B —(ZRZCOSZ,B—(X(“’))Z) L C,, p.,=-R°D,.
2 3(l+ﬂ,) 1 3 3 1 1 3(l+ﬂ,) 3 4 2
Stresses on the bonded part of the interface are given by the following equation:
W iich—— 1 (1+2)F(2)-
Myt oK
R2 = Vi 81 R2 YUE: i
—?(,ul;gzwz(z)+/1,u2;(1W1(z))—E?Wl(z), z=Re", B<lf<x. (31)

Crack opening (30) and stresses on the bonded part of the interface (31) have a physically unreal
oscillation near crack tips in case of different materials of matrix and inclusion. Such oscillation of
stresses and displacements near the tips of an interfacial crack is a known limitation of the “open”
crack model that was described, for example, in [8]. However, in most cases the oscillation zones
are negligible small and the use of the “open” crack model can be approved by Rice [24] approach.
Thereby stress intensity factors at the crack tips are introduced as

K +iK: = lim JZ;zR(J_rH—,B)%ﬂy(&S:)+io~'fl)). (32)

60—+ B+0

After calculation of the limits they get the following form:

78 : +i .
K +iKS =7 14 / T e (2¢sing) " P(Re*). (33)
M+ i, | Rsin B

NUMERICAL RESULTS

All results presented in this section are obtained for plane stress state, Poisson’s ratios
v, =v, =0,26 and uniaxial tension at infinity N,/N, =0, N, >0.

Fig. 2-4 show the crack opening, normal and shear stresses at the interface, respectively, for the
ratios of the intensities of electrical and mechanical loads at infinity &EZ/N,=0,

£E2IN,=05-10% and &E2/N,=10". These Figures are obtained for =60, “2=2,

Hy
0 0 @) @
fo_10*, f2op, B 00, 2o 45, B _400, 22— 75, =45, o, =0. As it is
& & & 2 & &

shown in Fig. 2, an increasing of electrical load intensity leads to decrease of the crack opening.
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Also it should be noted from Fig. 3-4, that intensity of the electrical load influences the normal
stresses at the interface much more essentially than the shear ones.

A4 A

AR L. MR

68 L - 0 -20 0 20 40 60

Fig. 5 Fig. 6

The crack opening for various parameters of materials and applied loads is shown in Fig. 5-8. All

these results are obtained for 5 =60, 2& =107, &E2/N,=10"*. Particularly, Fig. 5 shows the
&

crack opening for the ratios of materials dielectric permittivities %2 _ 0,5, %2 1 and %2 = 2, and
& & &
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(1) ® () (2)
also X2 —05, & 400, 2 - 75,2 _0, 2 _0, ¢=-30", @, =0. Asit is shown in this
H & & & &

figure, increasing of the matrix dielectric permittivity decreases the crack opening. Fig. 6 shows the
crack opening for the direction angles of mechanical load at infinity «, =0, «, =45 and

1) (2) (2)
. =90°,andalso #2 =05, “2 05, 3 —400, 22 = 75 4 _900 22 _ 45 4- a5
Hy 51 & & & &

Fig. 7 shows crack opening for the direction angles of electrical load at infinity =0, =45 and

0 @) o)
wo00, andalso =05, Cop A _on0 % _ 45 A 400, & _ 75 @, =0. As
My 51 & 2 & &

one can see, angles a and «, have a great influence on the crack faces intersection zones
appearing. The cases of none intersection zones, one zone and two zones are presented. Fig. 8

shows the crack opening for ratios of elastic modules #2 =05, 2 _1 and #2 =2 These results
H H H
o) a0 2@ a®
are obtained for %2 =05, aj—:400, 2 =-75, 1-=200, 2-=-45, =0, a, =15". As it
& & & & &

is shown in this figure, decreasing of the matrix elastic modulus increases the crack opening.

-5 -3

Fig. 7 Fig. 8

Fig. 9-14 show the dependencies of the normal and shear stress intensity factors at the upper crack

(1) (1)
tip from different variables. All these results are obtained for %2 _ =0,5, ai—=4OO, aL=—75,
& & &
a® a®@

-1 =200, -2 =-45. Particularly, Fig. 9-10 show variation of stress intensity factors from crack

angle B for ratios of the intensities of electrical and mechanical loads at infinity £E;/N, =0,

£E2IN, =10 and &EZ2/N, =2-10. These results are obtained for 2= =10, #2205, o =0,
& Hy

a, =0. As one can see, increasing of the electrical load intensity decreases the absolute values of
both normal and shear stress intensity factors.
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Fig. 9 Fig. 10

Fig. 11-12 show variation of stress intensity factors with respect to the angle of mechanical load

applying at infinity «, for ratios of elastic modules &:0,5, 2 _1 and #2 = 2. These results
H H H

are obtained for g =60, £2 =10, £E2/N, =10, a=0. As it can be seen from these figures,
&
increasing of the matrix elastic modulus decreases the absolute values of the stress intensity factors.

Fig. 13-14 show variation of stress intensity factors on the angle « of electrical load applying at

infinity for the ratios of dielectric permittivities “¢ =0,5-107, %c =10~ and % =2.10"*. These
& & &

results are obtained for #=60", #2 =2, &E2/N, =10, o, =0.
H

S R -
80 90

0 10 20 30 40 30 60 70 80 L E R Y

Fig. 11 Fig. 12

As it is shown in above figures, various combinations of materials and parameters of electrical and
mechanical loadings may cause intersection of crack faces. It is obvious that appearance of the
intersection zones in the “open” crack model solution means that in reality the crack faces contact
with each other and the crack model, which takes into account the crack faces contact should be
applied. Nevertheless, “open” crack model solution can be used to predict number and
configuration of the contact zones for such cases. Furthermore, the obtained results are precise
enough at a certain distance from the contact zones; in particular, they are reliably applicable for the
determination of the fracture parameter at the most dangerous crack tips, where the crack is
completely open except small zones of oscillation.
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Fig. 13 Fig. 14
SUMMARY

An electrostrictive plane with a circular electrostrictive inclusion made of another material and
having an arc crack at the material interface under the influence of arbitrary mechanical and
electrical loadings at infinity is considered. Crack faces are assumed to be non-interacting and
permeable to an electric field. Specified problem is resolved within the framework of uncoupled
problem of electroelasticity.

At the beginning the boundary problem of electrostatics is resolved by expanding three unknown
complex potentials in Laurent series. Further, the problem of electroelasticity is resolved taking into
account the obtained solution of electrostatics problem. Boundary problem of electroelasticity is
formulated for four complex potentials that are analogues of Kolosov-Muskhelishvili potentials. It
is reduced to the problem of linear relationship at the crack, which is resolved by the methods of
analytical function theory. Unknown constants in the general solution of the problem of linear
relationship are found from the boundary conditions at infinity and from the limitations imposed on
stresses and displacements at origin, at infinity and near the crack.

The obtained solution determines completely the stress-strain state of the plane with circular
inclusion and an interface arc crack under arbitrary electro-mechanical loading at infinity.
Particularly, the formulas determining stress-strain state at any point of the plane are found and also
the exact analytical expressions for the crack opening and the main fracture mechanical parameters
are obtained. Dependencies of the crack opening and the stress intensity factors near crack tips from
mechanical and dielectric properties of materials and from applied mechanical and electrical
loadings are analyzed. The scope of applicability of the “open” crack model is defined and the
importance of this model for the determination of the fracture parameter at the most dangerous
crack tips is emphasized.
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BusHagaroThcs 9acTOTH Ta (OPMH BUIBHHX KOJHBAHb TOHKO! IMIIHAPUYIHO! OOOJOHKH EINTHIHOTO
MOTIEPEYHOT0 TMepepidy cTajnoi TOBHIMHU 3 JKOPCTKO 3aKpilsIeHUMHU TopisMu. JlociimKeHHs
MIPOBOJMIIMCH METOJIOM CKiHYEHHUX EJIEMEHTIB, SIKAH peaizoBaHO Ha JIICH3IHHOMY TpOrpaMHOMY
3aco0i FEMAP 3 po3B’s3yBauem NX Nastran. JIoCTOBipHICTh OTpUMaHUX PE3YJIBTATIB 3a0€3MeTy€ETHCS
BUKOPHCTaHHSIM OOI'PYHTOBAaHOI MaTeMaTHYHOI MOJEJ, KOPEKTHICTIO NOCTaHOBKHM 3ajadi, PO3B’sS3KOM
TECTOBMX 3aJad Ta MPAaKTUYHOIO 30DKHICTIO pPO3paxoBaHMX 4YacTOT IIPH 3aCTOCYBaHHI METOIY
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