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The propagation of a solitary wave over a submerged obstacle installed at the
channel bottom is numerically investigated. The topic is closely related to the
operation of protective structures in natural bodies of water used for dissipation
of wave energy. The developed numerical technique couples the method of
boundary integral equations used to determine the free surface deformations
and the vortex scheme for modeling the vortex field generated by the wave.
In order to examine the validity of the model, the calculated free surface
elevations were compared for a special case with corresponding data of the
experimental research conducted in the hydrodynamic flume of the Institute
of Hydromechanics. The comparison has been demonstrated that the present
numerical scheme provides a good estimate as of reflected as of transmitted
waves, which form above a submerged obstacle. Systematic calculations of the
propagation of a solitary wave over submerged vertical barriers of different
heights and lengths are performed. Their results point out that the type of
interaction of a solitary wave with a barrier depends on the coefficient, which
is the ratio of the incident wave amplitude to the thickness of the water column
over the obstacle. When its value is less than the critical value, which is about
1, the incident wave splits smoothly into reflected and transmitted solitons and
it breaks down otherwise causing chaotic oscillations of the free surface. The
detail investigation of the vortex flow generated by the solitary wave near a
vertical barrier detected two large-scale opposite vortices forming one after
another at the obstacle tip. Interacting with the obstacle and channel bottom,
the vortices grow to the size of the water depth and are shed to the flow in both
the upstream and downstream directions. The vortices specify generation of
water flows and intensity of turbulent processes near the obstacle. It is revealed
that the influence of the vortex field on the stability of the submerged obstacle
depends on its height. When the barrier is tall, the vortices go up to the free
surface and are carried away by the collinear flow. In the case of a low obstacle,
the vortex flow dissipates in its vicinity causing bottom erosion in this region.
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UucenbHO AOCTIMIKYETHCS MOIIMPEHHS COJITOHHOI XBWJII B KaHasi, Ha JHI
SKOTO BCTAHOBJICHO 3aHypeHy nepemikofy. Llg mpobnema TicHO moB’si3aHa 3
eKCILTyaTalli€l0 3aXUCHUX CIOPY U PO3CII0BAHHS CHEPTii XBUIIb y IPUPOIHUX
BojloiiMax. Po3BHHEHAa MOJENb MOETHYE METOA TIPAaHUYHUX IHTETpaIbHUX
PiBHSIHB, 110 3aCTOCOBYETHCS JIJIsl BUSHAYEHHS 1ehopMaliiii BUTbHOI TOBEPXHI,
1 BUXPOBY CXEMY JUIsl pO3PaxXyHKY BUXPOBOI'O MO, SIKE TEHEPYETHCS XBHIICIO.
Juia i Baniganii 3amydeHi JaHi aHaIOT1YHUX eKCIIEPUMEHTAIBbHUX J10CITIHKEHb,
10 TPOBOJMINCA B TiApaBIi4HOMY JIOTKY IHCTUTYTy rimpomexaniku. 30ir
CKCIIEPUMEHTAIbHUX Ta YHCEIbHUX PE3YNbTaTiB IOJO0 EBOJIOLI BiIBHOI
MOBEPXHI BKa3ye Ha Te, L0 3aIPONOHOBAHA TEOPETUYHA MOJENb aJ€KBAaTHO
OTIUCY€E TApaMeTPH SIK MPOXiAHOI, Tak 1 BIAOUTOI XBUIb, SKI YTBOPIOIOTHCS
HAJl 3aHyPEHOI0 MEePEIKo1010. BukoHaHi po3paxyHKH MOUIMPEHHS COTITOHHOT
XBHJII HaJl 3aHYPEHUMH BEPTUKAIBHIMHU 0ap’epaMu pi3HOi BUCOTH Ta TOBXKHHU.
3 IXHIX pe3y/IbTaTiB BUILTUBAE, 1[0 TUII B3a€MOJIT COJIITOHHOT XBUIIi 3 6ap’epoM
3aJICKUTh Bif Koe(illieHTY, SIKUH € BiIHOMICHHSIM aMILTITYAU MaJalo4oi XBUI
JI0 TOBIIMHY CTOBIIA BOAM HAJ Neperkonoro. Komu ioro 3HaueHHS MeHIIe 3a
KPUTUYHE, SIKe CTAHOBUTH MPUOIM3HO 1, Magaroda XBUIS M’ SIKO HOAIISETHCS
Ha BIIOWTHN Ta MPOXIiTHUHA COMITOHH. B iHIIOMY pa3i BOHa pyHHYETbhCS, 110
BUKITUKAE€ XAOTHYHI KOJMBaHHS BUIBHOI MOBEpXHi. JleTanbHe NOCTiHKEHHS
BUXpOBOi Teuii, SIka T€HEPYEThCS COJITOHHOK XBHIICK MOOIM3y Oap’epy,
BUSBUJIO B IIii 00JaCTi /1B BEIMKHUX MPOTHIICKHO CIPSIMOBAHUX BUXOPH, IO
MOCITIZIOBHO YTBOPIOIOTHCS Ha BepIIMHI Oap’epy. Bzaemomitouu 3 mepemniko10to
Ta JIHOM KaHaly, BOHH 3POCTAIOTh JI0 PO3MIpiB, CMIBCTaBHUX 3 IIIMOMHOIO
BOJIM, Ta BiApHBaIOThCA. OJUH i3 HUX PyXaeThCs 3a TEUi€lo, HIIMN — MPOTH
Hei. 11i BUXopu BU3HAYAIOTH PO3BUTOK TEUil Ta IHTCHCUBHICTH TypOyIEHTHUX
npoueciB mobnusy mnepemkoan. OTpUMaHO, IO BIUIMB BHUXPOBOTO MOJIS
Ha CTIHKICTh 3aHYpPEHO! KOHCTPYKIIii 3aJekuTh Bif ii Bucotu. Komu Gap’ep
BHCOKHI, BUXOPH MiJHIMAIOTBCA 1 3HOCATHCS CYMYTHBOIO Tewiero. Y pasi
HHU3BKOI MEPENIKoaN BUXPOBUH MOTIK AUCHUITye MOONN3y HEl, CHPUYNHSIIOUH
epo3ito JIHA B I1iii 00IacTi.

Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences. Ne 1 (2021) ISSN 2413-6549



24

Introduction. The interaction of surface waves
with submerged obstacles in shallow water is a clas-
sic problem of coastal and marine hydrodynamics.
The topic is closely related to the construction of sub-
merged protective structures dissipating wave energy
and preventing coastal erosion. Besides, it deals with
natural factors that may lead to dangerous processes
in coastal zones such as the wave propagation over
coral reefs or continental shelf. The importance of the
problem has led to a large number of theoretical and
experimental studies over the past decades. In most of
them, a solitary wave is considered owing to unique
relationship between wave nonlinearity and steepness
that reduces the number of important parameters to
one [1]. Solitary waves present a limiting condition
for the run-up of an extreme non-linear long wave,
such as tsunami [2]. Besides, the connection of the
solitary solution with ocean waves is ensured by the
fact that periodic waves in deep water are unstable
and break up into groups whose circumferential line
has the properties of a soliton [3].

Earlier researches were based on the solitary
wave theories in the shallow water such as Boussin-
esq and the KdV equations [4; 5]. The models pre-
dict accurately the reflected and transmitted waves
within of its applicability but calculate higher wave
amplitudes as compared with experimental data for
strongly non-linear problems [5; 6]. To overcome this
restriction, the Boundary Element Method (BEM)
was applied. The BEM is based on the potential flow
theory and adapted to solve the Laplace equation
with nonlinear boundary conditions on the free sur-
face. Using this approach, Grilli et al. [7] described
the wave breaking above obstacles of different shape.
The influence of wave amplitude and obstacle param-
eters on wave behavior was described in [7], where
the BEM was applied for studying the interaction of
a solitary wave with a submerged semicircular cylin-
der. One of the latest applications of the potential the-
ory to calculation of wave evolution is simulation of
the interaction of a solitary wave with a wave energy
converter in the presence of bottom irregularities and
collinear currents [9].

It is well known that the solitary wave passing
over a submerged obstacle causes intense vortical
flows inside the water column which strongly affect
the wave energy and stress distribution on the bed.
The potential theory with irrotational flow assump-
tion is not suitable to investigate the flow separation
and generation of vortex field near the structure. To
take into account the above- mentioned effects, the
numerical methods based on the viscous flow equa-
tions were developed. The volume of fluid (VOF) and
mark-and-cell chart (MAC) methods are two main
approaches for modeling viscous fluid flows with
strong nonlinearity on a free surface. Those employ
the Reynolds Averaged Navier—Stokes (RANS)
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equations with a k& —¢& non-linear turbulence closure
model [10]. Basing on these approaches, significant
advances have been made in understanding the phe-
nomena accompanying the interaction of a solitary
wave with submerged obstacles [11; 12; 13].

The great disadvantages of the grid-based numer-
ical schemes are the difficulty in tracking the fluid
interface and implementation of the free surface
boundary conditions, especially when a moving grid
is used. An alternate approach is using the Lagrang-
ian-type numerical schemes which model a free sur-
face by a system of singularities moving with the fluid
particles. It allows reducing the initial boundary value
problem of determining the free surface configuration
to a system of the integral equations in respect to the
strength of singularities [14]. In this approach, the
generation of vorticity by the free surface is predomi-
nantly neglected, which greatly simplifies the bound-
ary conditions. One can find examples of the use of
the Lagrangian scheme in papers [15; 16], where
interaction of a solitary wave with a submerged rect-
angular structure is considered. Note the viscous flow
under the free surface is calculated with the vortex
method, which is based on the velocity-vorticity form
of the Navier-Stokes equations. The vortex field is
shown to be the main factor determining the drag of
the structure.

A similar theoretical model is developed in
the present study. Its difference from the previous
schemes lies in the simpler involvement of the free
surface dynamic condition, which, nevertheless, does
not affect the calculation results. Taking into account
that the generation of vorticity at the free surface is
ignored, the vortex scheme developed by authors in
paper [17] can be utilized for viscous simulation. The
validity and efficiency of this algorithm has been con-
firmed when solving various two-dimensional prob-
lems of viscous fluid dynamics [18; 19; 20]. In order
to verify the mathematical model, a set of laboratory
experiments in the hydrodynamic flume was per-
formed with a solitary wave passing above a vertical
barrier. In both the numerical simulation and exper-
iment, the free surface elevations were measured
in the given locations and the obtained results were
compared. A good match between the data of the cal-
culations and the physical experiment was obtained
as for reflected as for transmitted wave.

Problem statement. A solitary wave travelling in
viscous incompressible fluid over a submerged rect-
angular obstacle of height d and length a is consid-
ered (Fig. 1). A Cartesian coordinate system is fixed
such that its origin is connected with the midpoint
of the obstacle, the X-axis lies in the bottom and the
y-axis points vertically upward. The still water depth
is & and the amplitude of the incident wave is 4, .
Taking into account that the fluid in the flume is under
the action of gravity, its motion is governed by the
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Fig. 1. Schematic diagram of the numerical flume
with a solitary wave passing over a submerged
rectangular obstacle

following system of equations:
V-V =0, 6]

a—V+(V V)V——vmiv v, 2)
ot Re

where the hydrodynamic pressure P is equal
to the total pressure p minus the hydrostatic pres-
sure: P= ery/Fr2 , V is the velocity and ¢ is the
time. The variables in (1), (2) are scaled by the still
water depth % and the phase speed of linear long-
wave /gh , where g is the acceleration due to the
gravity; ?zt@ / h=t\{g/h is the dimensionless
time (the overline in (2) and further is omitted). The
Reynolds number is evaluated based on the depth-av-

eraged velocity under the wave crest U :fc,

where c¢=,/g(h+4) 1is the wave celerity, then
Re=Uh/v=A4./g(h+ Al.)/v . The Froude number is

introduced as Fr = c/ @ .

The kinematics boundary condition at the free sur-
face X forces the surface to follow the trajectories of
the fluid particles z, lying on it. This means that the
following evolutionary equation is realized:

dzy
= Vs. 3)

The dynamic condition declares the continuity of
stresses when jumping across a free surface. It is writ-
ten under the assumption that the surface tension and
viscosity are neglected:

Ps=Pa> 4)
where p, denotes the atmosphere pressure.
The non-leaking and no-slip boundary conditions
must be required at the bottom:

V(,.0-i=0, (5)

V(#,0)-7=0, (6)

where 7, denotes the radius-vector of bottom

points, 7,7 are the normal and tangential unit vector
on the bottom, respectively.

To avoid the wave reflection at the lateral bound-
aries of the numerical wave flume, wave damping is
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introduced following the method proposed in [14]. For
this reason, numerical sponge layers are put at both lat-
eral boundaries to absorb the outward-traveling waves.

Numerical model. Boundary value problem
(1)-(6) is solved using the numerical model that com-
bines the boundary integral equation method calculat-
ing the free surface evolution and the vortex scheme
for simulation of the viscous flow near an obstacle. It
has been described in details in papers [17; 18] there-
fore generalities of the model are only considered here.

Since the vorticity generation at the free surface
is ignored, the flow is irrotational far from the sub-
merged structure. At the same time, the wave motion
causes an intense vortical flow in close proximity to
the structure. Following the Helmholtz decomposi-
tion principle [21], the flow under consideration is
decomposed into the potential part in the thin layer
near the free surface and the rotational part every-
where except the fluid boundary. Then the velocity
field is represented by the sum:

V(#,1)=V+Vx(Pk), (7)

where 7 denotes the radius-vector of a point, ¢

and ®k are the scalar and vector potential of the irro-

tational and vortical flows, £ is the unit vector out of
the page.

In the present model, the vortex flow is described
by the function of vorticity @ =k -V . To take into
account the free surface and bottom irregularity, the
method of boundary integral equations is applied.
According to this approach, the free surface and the
underwater obstacle boundary are modeled by vor-
tex distributions of strength p and y respectively
[14; 17]. According to these assumptions, velocity
field (7) is written by the following equation:

V(b = vjp(

-, . 0G(7, r)dl(ﬁ,
on

L, o\ OG(FF)
= di(7") +

+ij( r)+

+ jm( Dk x VG(F,F) ds(7), (8)

where X, D denote the free surface and the
boundary of obstacle respectively, S is the viscous
flow domain, G(#,7") is the Green function for a
point vortex in the half-plane [21].

For convenience, we describe the flow field with
a complex coordinate z =x+iy . The free surface X
and obstacle boundary D are parameterized in terms
of linear parameters e and s respectively, which
are the Lagrangian coordinates of the points lying
on these interfaces. The vorticity field o is approxi-
mated by a set of vorticity carrying particles as pro-
posed in [22]:

oo(z,t)zzrj(t)]%(z—zj), (9)
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where I’ j and z; are the circulation and coordi-
nate of the j—th vortex, N is the number of free
vortices, f; is the distribution function of vortex.

Within this approach, equation (8) can be rewrit-
ten as:

V@J):E%ju@gn[ ! !

- - de’ +
z—z(et) z-z (e’,t)}

| , 1 1 ,
%J;Y(S ’t)[z—z(s') - Z—z*(s’)}ds

1 & . 1 1
+— . I - — |, (10)
2mi 5 z—z,(t) z—z;(1)

where the asterisk denotes conjugation about the
Ox-axis. Note the principal value of the integrals is
considered in (10) in order to avoid singularities.

In the discrete scheme, the continuous vortex
sheets located along ¥~ and D are replaced by sets
of the panels of length Ae and As. Complex coordi-
nates of the panels are:

(2),,(0) = z5(e,,.0), (zp), = zp(s;), (11)

where m=12,..,N,, k=12,.,N,, Ny, N,
are the numbers of the panels. The strengths p(s,?)
and y(s,?) are assumed to be constant along a panel,
so we deal with distributions of the piecewise contin-
uous functions:

(O =ple,.0, v, =y, .  (12)

To determine these functions, free surface
dynamic condition (4) and non-leaking condition (5)
are applied in accordance with the technique devel-
oped in [23]. It involves solving the evolutionary
equations for (z;), and ¢, . The first of them is
kinematic condition (3), and the second follows from
dynamic condition (4). Then the system of linear
algebraic equations with respect to p, (¢) and vy, (¢)
is solved. One can find a detailed description of this
method in paper [18].

Following [10], we utilize a fourth-order Adams—
Bashforth—Moulton (ABM) predictor-corrector scheme
to integrate the evolutionary equations for (z;), and
¢,, . The regularization procedure is fulfilled in the end
of a time step to eliminate numerical instabilities on the
computed free surface. According to this procedure,
the panel lengths are recalculated so that all segments
should be equal. Additionally, the strength function
u,, () is changed on the m -th panel proportionally to
the new value of Ae. Note that the number of panels
at the free surface does not change during the entire
modeling process. This regularization improves con-
siderably the stability of free-surface computations that
allows extending the range of parameters of the prob-
lem under consideration at which the simulation will
be successful. In particular, breaking solitary waves are
considered together with regular processes.

Wave reflection on side walls of the numerical
flume is eliminated with the help of the sponge lay-
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ers damping perturbations of the scheme parameters.
This way involves the incorporation of additional
damping terms into the evolutionary equations as for
points (z;), as for potential ¢, . For the first time,
the technique was proposed in [24] and since then it
has been successfully used when integrating the prob-
lems with a free-surface [11; 13].

In this study, modeling the evolution of a solitary
wave when it passes over a submerged obstacle is
coupled with calculations of the vorticity field gen-
erated by the wave. The last are performed with the
well-known vortex method [22], which applies the
velocity—vorticity form of the Navier—Stokes equa-
tions instead the traditional pressure—velocity for-
mulation. If one takes the curl of the Navier—Stokes
equations, the pressure field will be eliminated
including the component associated with gravity.
Taking into account that the generation of vorticity
at the free surface is neglected, the vortex scheme
developed by us in paper [17] can be utilized for vis-
cous simulation. The validity and efficiency of this
algorithm has been confirmed when solving various
two-dimensional problems of viscous fluid dynam-
ics [18; 19; 20].

Model verification. The developed numerical
model has applied by us for simulation of solitary
wave propagation over a step [18]. Comparison of
the obtained results with the experimental data from
paper [25] shown that the simulation predicted accu-
rately the fission process with respect the dependence
of the number of secondary solitons on the incident
wave amplitude and step height.

In this study, the model’s ability to simulate accu-
rately the evolution of a free surface is verified against
laboratory experiments with a solitary wave passing
over a submerged vertical thin barrier. The exper-
iments were conducted in a glass-wall flume of the
Institute of Hydromechanics. The laboratory setup,
equipment and experimental technique have been
described in detail in paper [26]. Fig. 2 illustrates the
normalized parameters of the problem under consid-
eration as well as positions of the gauges utilized to
fix free surface elevations as in laboratory experiment
as in numerical modeling.

J)
4;=035h G2

:T e 11— > Th —>

h=11cm
0.84

i J

“Y

>
1k

Fig. 2. Parameters of laboratory
and numerical researches
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Fig. 5 demonstrates the time histories of instan-
taneous free surface elevations m(z) at the selected
locations G1 and G2 derived in the measurements
(solid black lines) and in the calculations (dotted red
lines). The comparison indicates that the numerical
calculations fit the measurements well for the main
waveforms in terms of the incident and reflected
waves recorded by the gauge G1 and the transmit-
ted wave recorded by the gauge G2. It should also
be noted that the experimental and numerical results
are in good agreement with respect to the propagation
rate of free surface perturbations. Here and below,
the dimensionless time # =0 is defined as the instant
when the crest of a solitary wave passes exactly above
the top of the obstacle.

Setup of the numerical experiment and results.
A numerical wave flume used in this study is of
Im depth and 140m length. Normalized parameters
of the problem will be further considered. The width
of the absorbing layers adjoining the lateral sides of
the flume is put to 2/ . The rectangular obstacle is sit-
uated in the middle of the computational domain. At
the initial time instance, the wave crest is located at
x/h=-20 and then it propagates from left to right.
To derive the initial data for a solitary wave, profile
and velocity potential, the MatLab implementation of
the iterative method proposed in [27] is utilized. Since
it computers the approximated solitary solution of the
Euler equations, both horizontal and vertical motions
of fluid particles under the wave can be considered.
This allows modeling not only the free surface evo-
lution but also the dynamics of the vortex field gen-
erated by a solitary wave. The number of vortex
panels along the free surface is equal to Ny =2800;
a uniform grid system of Ax=Ay=0.01% is put on
the flow field; the time step is A7=0.005\/g/% ;
Re=0.69-10°.

Fig. 4 demonstrates the free surface elevations
Nn(x,¢) arising when the solitary wave of amplitude
A /h=0.2 passes over submerged rectangular bar-

(@) 14

experimental data

13E - ——— numerical results

12

/h

11

1.0 E

09 £
20 -10 0 10 20 30

tg/h
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riers of different height d /4 and length a/#h . The
results represented in Figs. 4a,b,c are obtained at
a/h=0.1, so they reflect the wave evolution above a
thin vertical barrier. It is reasonable to classify those
involving the quantitative parameter K, , = 4,/(h—d).
It was introduced in [26] based on the data of lab-
oratory experiments and was called the interaction
coefficient. Fig. 4a illustrates the weak interaction
of the solitary wave with the thin barrier of height
d/h=0.7. It is characterized by the growth of the
incident wave over the obstacle and its smooth split-
ting into the reflected and transmitted solitons mov-
ing in opposite directions. Note that the interaction
coefficient in this case is K, =0.65.

Free surface profiles in Fig. 4b are obtained at
d/h=0.8, which corresponds to the interaction
coefficient K, ~1. The transmitted wave has not yet
destroyed here, but the dynamics of the process is
complicated due to dispersion effects conditioned by
the generation of a chain of secondary solitons. Note
also that the local rising of the free surface level in
Figs.4a, 4b observed immediately behind the obstacle
is produced by the intense recirculation flow devel-
oped in this area.

Fig. 4c demonstrates the strong influence of a sub-
merged barrier on the wave, which is characterized
by the interaction coefficient K, =2 (d/h=0.9).
In this case, the incident wave is divided into three
parts. The reflected and transmitted solitons moving
in opposite directions are formed, as usual. In addi-
tion, a part of the water lying directly above the bar-
rier first rises, and then falls sharply and collapses, as
a result, chaotic pulsations of the free surface arise in
this area. This process is characterized by large gra-
dients of the free surface and the formation of water
splashes. Finally, two regular secondary solitons sep-
arate from this region, which follow the transmitted
wave. It is obvious the more complex the interaction
of the wave with the obstacle the more wave energy
is expended on secondary processes, which primarily

(b) 14

13F

experimental data

———— numerical results

12f

N/h

11

10

-10 0 10 20 30

tg/h
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220

Fig. 3. Free surface elevations for the solitary wave interacting with a submerged barrier
derived in experimental measurements and calculations by gauges G1 (left) and G2 (right)
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Fig. 4. Transformations of a solitary wave of amplitude 4,//7=0.2
above a submerged rectangular structure:
(a) —d/h=07,a/h=0.1,(b)—d/h=08,a/h=0.1,
(c)—d/h=09,a/h=0.1,(d)—d/h=09,a/h=1.5

affects the characteristics of the transmitted soliton.
One can see a significant decrease in the amplitude
of the transmitted wave in Fig. 4C in comparison with
the previous cases.

The calculation results also show that the wave
destruction over long rectangular structures is not
as intense as over thin ones, even if they are quite
high. This conclusion is confirmed by the free surface
profiles depicted in Fig. 4d, which are obtained when
the solitary wave passes over the rectangle of height
d/h=0.9 and length a/h=1.5. The abrupt change
in water depth is seen to increase greatly the free
surface nonlinearity. As a result, the incident wave
grows above the obstacle and then it divides into a
reflected soliton and a transmitted wave. In addition,
the intense secondary solitons and dispersive wave
chain are generated. At the same time, no destructive
processes in the form of chaotic pulsations of the free
surface near the structure are observed.

The wave propagation over a submerged obstacle
is accompanied not only by effects on the free sur-
face, but also by underwater processes. A travelling
solitary wave generates the intense flow of liquid par-
ticles under the free surface. When this flow meets
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an obstacle, it has to rebuild in accordance with the
obstacle configuration. Due to the flow narrowing, a
shear layer is formed near the structure, followed by
flow separation and the formation of large-scale vor-
tices. Fig. 5 illustrates the velocity fields induced by
the solitary wave of amplitude 4,/4=0.2 around the
submerged barriers of length a//4=0.1 and height
d/h=0.7 (left)yand d/h=0.9 (right).

It is known [28], that the length L  of a soli-
tary wave is related to its amplitude by the ratio
L /h~10,/h/ 4 . Then one obtains L /h~22 at
A,/h=0.2. This means that the formation of the
shear layer due to the approaching wave begins when
the distance between the wave crest and the barrier is
about 11/, which corresponds to the dimensionless
time 7 =tJg/h~-10.

Figs. 5a, 5f show the process of converting the
shear layer into a clockwise vortex, here ¢ =—8. The
vortex originates in the front edge of the barrier and
rotates in the direction of wave movement. As the
wave crest approaches the obstacle, the vortex con-
tinues to grow in size as depicted in Figs. 5b, 5¢g at
t =-2. Figs. 5¢c, 5h correspond to the instant when
the crest of the solitary wave is at the top of the bar-
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rier (£ =0). The horizontal flow velocity reaches its
maximum value over the obstacle, so the main vortex
sheds out and begins to dissipate rapidly.

When the wave has passed the obstacle, the trans-
latory motion of fluid particles almost completely
ceases, as a result, the vortex zone remains close
to the obstacle and grows to the depth of the water
(Figs. 5d, 5i). The zone interacts with the channel
bottom and the rear edge of the barrier forcing gen-
eration of the boundary layer which thickens and
forms the secondary counterclockwise vortex above
the obstacle tip. In Figs. 5d, 5i (7 =8), the counter-
clockwise vortex is still remains attached to the rear
edge of the barrier but further it moves upward and
upstream and sheds out (Figs. 5e, 5j). Subsequently,
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the primary and secondary vortices reach the free
surface and cause it to bulge. It follows from the
present results that the evolution of the vortex field
forces the water to move upward at the rear edge of
the obstacle as well as in the direction opposite to
the wave motion.

The influence of the barrier height on the vortex
field evolution can be seen by comparing the left
and right columns of Fig. 5. With a lower barrier
height (left column), the main vortex develops near
the structure and remains there until complete dissi-
pation. When the barrier is high (right column), the
gap between its top and the free surface is narrowed
that leads to increasing the fluid velocity here. So, the
primary clockwise vortex is more intense in this case

Fig. 5. Free surface elevations (blue) and velocity fields generated by a solitary wave
of amplitude 4, //#=0.2 around thin vertical barriers of height d//=0.7 (left)
and d/h=0.9 (right) at various time instants
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and localizes closer to the free surface than to the bot-
tom. It moves together with the transmitted soliton
quickly leaving the region adjacent to the obstacle.
Thus, the effect of a vortex flow on the channel bot-
tom is stronger in the case of low obstacles located on
the way of a solitary wave. At the same time, vortices
generated behind high obstacles cause intense bulges
of the free surface.

Conclusions. The numerical model for studying
wave-structure interactions is presented. It com-
bines the boundary integral method for description
free-surface deformations and the vortex method for
integrating the viscous fluid dynamic equations. The
validity of this model is confirmed by the close match
of the calculated elevations of the free surface for a
special case with the corresponding data of experi-
mental researches.

Two types of interaction of a solitary wave with
a vertical barrier were revealed based on systematic
calculations of the propagation of the solitary wave
of normalized amplitude A4 /h=0.2 over barriers

of different heights. Those are the weak interaction,
when the incident wave splits smoothly into the
reflected and transmitted solitons, and strong interac-
tion, when the wave breaks down. The scenario for
the behavior of a solitary wave over a barrier depends
on the interaction coefficient, which is the ratio of the
amplitude of the wave to the thickness of the water
column above the obstacle. It is obtained that the crit-
ical value of the interaction coefficient is about 1, at
which the regimes change.

An analysis of the vortex fields created by the sol-
itary wave around barriers of different heights shows
that the fluid dynamics in the region is controlled by
the interaction of two large opposite vortex structures
generated at the barrier tip one after another. The
effect of the vortex field on stability of the submerged
structure depends on its height. When the barrier is
tall, the vortices go up and are carried away by the
collinear flow. In the case of a low obstacle, the vor-
tex flow dissipates in its vicinity causing bottom ero-
sion in this region.
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