
101

Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences. № 1 (2021)  ISSN 2413-6549

РОЗДІЛ II. КОМП’ЮТЕРНІ НАУКИ

UDC 004.9.629.7.05
DOI https://doi.org/10.26661/2413-6549-2021-1-12

FUNCTIONAL METHODS OF DEVELOPING
INTEGRATED MODULAR AVIONICS SYSTEMS

Kovalenko Yu. B.
Ph.D. in Pedagogy,

Associate Professor at the Department of Information Technology Security,
Doctoral Student in the study program “Computer Science and Information Technology”

National Aviation University
Liubomyra Huzara avenue, 1, Kyiv, Ukraine, 03058

orcid.org/0000-0002-6714-4258
yleejulee22@gmail.com

Kozlyuk I. O.
Doctor of Technical Sciences,

Professor at the Department of Telecommunication Systems
National Aviation University

Liubomyra Huzara avenue, 1, Kyiv, Ukraine, 03058
orcid.org/0000-0001-8239-8937

avia_ira@ukr.net

Development of modern avionics systems To rob the design of such systems is
unfeasible without victorious automation. Today, the area of such instruments
is represented by patented instruments, which are broken by such great authors
of lithuanians, such as Boeing and Airbus, as well as by low criticality, but
sometimes they are often seen in All the tools are based on the architectural
models of the broken system. Avionics systems today are a complex interaction
of software and hardware, so the methods and approaches developed in the
field of design and analysis of avionics and software systems should enrich
each other. At the top of the statistics, the movable materials available for
describing the architectures of the avionics systems are displayed, which is
shown as the program for the best passing through the texts of the meaning and
prompted the concepts, as it is good to go for the presentation. Then the statty
presents a set of tools for designing custom avionics systems. A set of tools
will provide you with a platform for designing and analyzing architectural
models, as well as special solutions for singing avionics systems. Winning
the structure, editing and manipulating models in both text and graphical
formats. It is important that the architectural models themselves, how to
describe the components of the system and interconnection between them,
form the basis for the formation of new technologies and tools for automating
the design. Smell allow you to describe the specific aspects of architecture in
a single form-small-scale model, as you can use different tools for revising
the internal narrow-mindedness of the architecture, and the configuration of
the automation of the system. The foldability of modern emergency systems
and a lot of them to the extent necessary to produce up to the need for local
resources. When IMA-systems are opened, the retailers are stuck with low

Key words: information
systems, decision-making
support, project in the aviation
industry, automated design
system, technological process,
integrated modular avionics.

102

Вісник Запорізького національного університету. Фізико-математичні науки. № 1 (2021)  ISSN 2413-6549

levels of problems, and the stinks have not been stuck in the past. For the resolution of these problems, additional
help comes in the form of automation and the computer-turn to adjust the box. The development of a straight line
in the first place is linked to the vicarious models of the new models, including the architectural models of the
software and hardware complexes.

ФУНКЦІОНАЛЬНІ МЕТОДИ РОЗРОБКИ ІНТЕГРОВАНИХ
МОДУЛЬНИХ СИСТЕМ АВІОНІКИ

Коваленко Ю. Б.
кандидат педагогічних наук,

доцент кафедри безпеки інформаційних технологій,
докторант напряму ‘Комп’ютерні науки та інформаційні технології’

Національний авіаційний університет
пр. Любомира Гузара, 1, Київ, Україна

orcid.org/0000-0002-6714-4258
yleejulee22@gmail.com

Козлюк І. О.
доктор технічних наук,

професор кафедри телекомунікаційних систем
Національний авіаційний університет
пр. Любомира Гузара, 1, Київ, Україна

orcid.org/0000-0001-8239-8937
avia_ira@ukr.net

Розвиток сучасних систем авіоніки робить проектування таких систем
неможливим без використання засобів автоматизації. У даний час область
таких інструментів представлена запатентованими інструментами,
розробленими такими великими виробниками літаків, як Boeing та
Airbus, а також низкою відкритих або частково відкритих міжнародних
проектів, що відрізняються за термінами дії, наявністю вихідного коду
та документації. Eсі інструменти базуються на архітектурних моделях
розробленої системи. У цій статті розглядаються мови, доступні для
опису архітектурних моделей систем авіоніки, та показано, яка мова
програмування є найбільш підходящою через її текстові позначення
та вбудовані концепції, які добре підходять для представлення
більшості елементів вбудованих систем. Потім у статті представлено
набір інструментів для проектування сучасних систем авіоніки. Набір
інструментів забезпечує як загальну платформу для проектування
та аналізу архітектурних моделей, так і спеціалізоване рішення для
певної галузі систем авіоніки. Він підтримує створення, редагування та
маніпулювання моделями як у текстовому, так і в графічному форматах.
Зауважімо, що саме архітектурні моделі, що описують компоненти
системи і взаємозв'язок між ними, стають основою для формування
нових технологій і інструментів для автоматизації проектування. Вони
дозволяють описувати різні аспекти архітектури в єдиній формалізованої
моделі, яку можна обробляти різними інструментами для перевірки
внутрішньої узгодженості архітектури, відповідності різним вимогам
системи, автоматизації проектних рішень, генерації даних і файлів
конфігурації, вихідний код і т.д. Складність сучасних авіаційних систем і
високі вимоги до їх надійності призводять до необхідності використання
загальних ресурсів. Під час створення IMA-систем розробники

Ключові слова: інформаційні
системи, підтримка
прийняття рішень,
проекти в авіаційній галузі,
автоматизована система
проектування, технологічний
процес, інтегрована модульна
авіоніка

103

Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences. № 1 (2021)  ISSN 2413-6549

стикаються з низкою завдань і проблем, з якими вони раніше не стикалися. Для вирішення цих проблем на
допомогу приходять різні засоби автоматизації і комп’ютерна підтримка розробки. Розвиток цього напрямку
в першу чергу пов’язано з використанням різних моделей, в тому числі архітектурних моделей програмно-
апаратних комплексів.

Introduction. The development of modern
avionics systems and other safety-critical control
systems requires advanced methodological and
instrumental support. There are appropriate tools
available, but the development of such high-tech
domestic industries as aircraft construction cannot
rely on them alone for at least two reasons. First,
such tools are quite expensive; secondly, and prob-
ably more importantly, they are ‘closed’ for devel-
opment and adaptation by domestic researchers and
engineers, which leads to an even greater backlog of
available technologies in this area.

Tools for the design, development, verification
and validation of avionics-type systems traditionally
support the model-based approach to model develop-
ment (Model Driven Engineering – MDE, and Model
Driven System Engineering – MDSE), as modeling
methods in their various forms: full-scale, semi-natu-
ral, mathematical – are always utilized in aircraft con-
struction and related industries [1]. In the last 20 to
30 years, a new type of modeling has appeared in the
field of software development, related to research on
formal program specifications and the use of so-called
formal methods for analysis – in particular, for veri-
fication of software systems. Avionics systems today
are a complex interaction of software and hardware,
so the methods and approaches developed in the field
of design and analysis of avionics and software sys-
tems should enrich each other. For this reason, the
use of formal methods of verification of complex
software and hardware systems, such as operating
systems and microprocessors, allowed us to quickly
master the development of design and integration of
avionics systems, as many problems in this new area
can be solved based on modeling technologies and
verification [2].

This article focuses on the development of meth-
ods for modeling, synthesis and verification of com-
plex aircraft systems, but the scope of potential appli-
cation of these technologies is much wider.

Integrated modular avionics. Currently, the
main approach to the design and development of
on-board systems of civil aircraft is the approach
of integrated modular avionics. According to this
approach, specialized controllers are replaced by gen-
eral-purpose processor modules, which provide inde-
pendent operation of different aviation systems. The
wires of each aviation subsystem are replaced with
virtual connections within a switched network infra-
structure based on technologies such as AFDX (Avi-
onics Full DupleX Switched Ethernet) [3; 4; 5] and
CAN (Controller Area Network) [6; 7]. This reduces

unreasonable duplication of hardware, which leads
to unacceptable levels of power consumption and
complexity of the on-board equipment system. But,
on the other hand, this approach greatly complicates
the process of software and hardware development,
posing new challenges in the design and integration
of software and hardware.

With the introduction of the IMA approach in
the complex of on-board equipment of the aircraft,
there is a new subsystem that provides a hardware
platform for the software of other on-board systems.
This subsystem is called the IMA platform and code-
named ATA-42. The team responsible for designing,
configuring and verifying the IMA platform is usu-
ally called the System Integration Group, as its task
is not only to develop a stand-alone subsystem, but
also to coordinate the needs of all platform users and
ultimately integrate the entire software and hardware
components using the IMA platform.

The tasks of the System Integration Group also
include:

–	 clarification/coordination of discrepancies
between requirements and needs with software and
hardware developers;

–	 proecting the IMA platform based on the needs
of functional applications in hardware resources,
including:

1)	distribution of functional applications from
computing modules (Core Processing Module –
CPM) taking into account the needs of applications
(amount of CPU time, distribution of CPU time
between strictly periodic applications, RAM/ROM
memory, network interface bandwidth, etc.);

2)	determining the composition of network com-
ponents (network topology), taking into account the
requirements of reliability, delivery time of messages
from sender to recipient, etc.

–	 verification of the developed on-board equip-
ment complex (OEC) for compliance with the
requirements set forth in the design documentation
for the aircraft, OEC and its individual components;

–	 preparation of configuration tables for IMA
platform components.

To solve these problems requires an accurate
understanding of all the details of the developed com-
plex at both high and low levels of detail, as well as
the greatest care in the analysis of the consequences
in case of changes. Due to the size of the OEC and
the number of essential parts of modern aircraft, it is
impossible for one person to have complete knowl-
edge of the full systems. In such conditions, the use of
traditional development methods by specialists, based

104

Вісник Запорізького національного університету. Фізико-математичні науки. № 1 (2021)  ISSN 2413-6549

on a careful description of all requirements, archi-
tectural solutions, etc. in text documents, becomes
excessively time-consuming and error-prone. The
ability to utilize software automation to solve these
problems encounters problems of heterogeneity and
unstructured information. A natural step to overcome
this problem is the formalization of information,
translating it into a unified machine-readable form,
which allows automation of its processing.

In the context of designing complex software
and hardware systems such as the IMA platform,
the main core is the architecture of the complex,
around which the requirements for the system as a
whole are designed, including its individual compo-
nents, design trade-offs, analysis and verification,
etc. Therefore, it is not surprising that it is the archi-
tectural models that describe the components of the
system and the relationship between them become
the basis for the formation of new technologies and
tools for design automation. They allow different
aspects of the architecture to be described in a sin-
gle formalized model, which can be processed by
different tools to check the internal consistency of
the architecture, meet the system's various require-
ments, automate design decisions, generate con-
figuration data and files, source code, etc. Model
analysis tools can be applied at different levels of
abstraction, including at the earliest stages of the
project in the presence of only partial and evaluative
information. Among experts, this practice is called
‘Early Validation’, and associated sets of relevant
tools (Early Validation Tools) [8].

The places for application of such tools in the pro-
cess of designing and developing the IMA platform
are shown in Fig. 1.

The use of architectural models in this area allows
resolution of the following problems:

1. Checking restrictions/requirements for the com-
ponents of the developed complex:

–	 Checking the adequacy of hardware resources;
for example, that the needs of all functional applica-
tions in CPU time and memory meet the hardware
characteristics of the computing module on which
these applications will run.

–	 Checking the temporal characteristics of the
interaction of functional applications or computing
modules; for example, that the delivery time of a
message from one functional application to another
does not exceed the specified requirements.

–	 Checking the possibility of allocating hardware
resources in accordance with certain restrictions; for
example, the ability to allocate CPU time for a set of
strictly periodic tasks, taking into account that each
task must be run at certain times according to a given
period.

–	 Safety and failure analysis of individual com-
ponents of the OEC (safety analysis).

2. Automation of distribution of hardware
resources between functional applications, taking
into account defined restrictions; for example, distri-
bution of functional applications on computer mod-
ules taking into account sufficiency of bandwidth
of network interfaces and possibility of scheduled
periodic tasks.

Fig. 1. Validation during design and development IMA platforms

Requirements for

solid waste
Variation of solid

waste

Architecture of
solid waste

Software design
(functional

applications)

Variation of
software (functional

pplications)

IMA platform
design

Allocation of
hardware resources

Integration of
software and IMA

platform components

Clarification of the
requirements for the

IMA platform

Variation of the
IMA platform

Development of software
and components of the

IMA platform

105

Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences. № 1 (2021)  ISSN 2413-6549

3. Generation of elements of the BWC platform:
configuration data / files, source codes of individual
components of the platform, etc.

Description languages of architectural models.
During the research in the field of design of software
and hardware systems on the basis of models, sev-
eral approaches to the description of architectural
models were formed (table 1) The most widespread
approaches are based on AADL [9], EAST-ADL [10]
and UML [11]. The EAST-ADL language is not con-
sidered in this paper because its scope is limited to
automotive systems based on AUTOSAR architec-
tural solutions. AADL inherited the main features
from the Meta-H language, developed to describe
on-board avionics systems in the late 1990s, and is
now the most common language for describing archi-
tectural models of software and hardware systems in
various application areas. UML is most often used to
describe software and hardware systems in the form

of one of its profiles, the most popular of which are
SysML [12] and MARTE [13]. Below are the main
features of these languages [14].

Based on the above, it can be concluded that both
UML (in the form of SysML and MARTE profiles)
and AADL provide approximately the same capabil-
ities to describe the software and hardware model of
the OEC. At the same time, AADL has a number of
advantages:

–	 In addition to graphical notation, AADL has a
text representation that will allow a specialist to cre-
ate and edit models, as well as analyze the semantics
of existing models without specialized editors, while
‘reading’ UML-based models without special chart
editors can be an intractable task;

–	 AADL limits the developer to a specific set of
declaration types (model element types) that have
specific semantics that the developer can use to
describe the firmware model, allowing you to reuse

Table 1
Languages for describing architectural models

UML AADL
Notations

Provides a set of charts to represent the structure of the
software; in this case, individual diagrams that describe
certain components of the software and hardware complex
that cannot be fully related to each other, i.e. combining
models developed by different groups of developers is
extremely difficult. Developed more in the tradition of
programming languages than descriptions of diagrams; it
operates with declarations of types and implementations
of model components that can be reused in declarations of
other components.

developed more in the tradition of programming languages
than descriptions of diagrams; it operates with declarations
of types and implementations of model components that
can be reused in declarations of other components.

Extending
Can be extended by using the following mechanisms:
stereotypes, which allow to expand the UML dictionary to
create new modeling elements;
tags of identifiers and values (tagged values);
redefinition of model elements with additional constraints.
These mechanisms are usually used by one or another
profile, which is a dialect of model description (for example,
SysML and MARTE).

Сan be extended by defining:
user-defined property sets that can add new property types
and definitions or extend existing types and properties;
annex-specifications, which allow to describe additional
characteristics of model elements in arbitrary syntax
and with arbitrary semantics, which are processed by
specialized tools.

Aspects of modeling
used mainly to describe the structure of the software; it
is based on three aspects: data, interaction and state; data
is described by class diagrams, interaction is described
by connection diagrams or sequence diagrams, states are
described by state diagrams. The most used SysML and
MARTE profiles extend UML as follows:
SysML adds two types of charts – the requirements chart
and the parametric chart; the requirements diagram is used
to describe the requirements and link the requirements to
the elements of the model; parametric diagram is used to
describe the relationships of software model components
with hardware model components.
MARTE expands UML by introducing the following
stereotypes: software model, hardware model, the relation
between software and hardware models.

used to describe the ‘execution architecture’. ‘Execution
architecture’ is implicitly divided into two parts: a set of
software components and interaction between them, a set of
hardware components and interaction between them; also
describes the relationship between software components
and hardware components.

106

Вісник Запорізького національного університету. Фізико-математичні науки. № 1 (2021)  ISSN 2413-6549

existing models developed by independent teams at
no additional cost. At the same time, UML, due to
its versatility, does not impose strict restrictions on
the types and semantics of the elements used, which
complicates the understanding of models developed
by third-party experts.

MASIW – a system integrator workstation.
Given the above features, the AADL language was
chosen as a formalism to describe architectural mod-
els in research in the field of automation of software
and hardware systems.

The research pursues a dual goal, consisting of a
research component – the development of methods
for modeling and verification of complex software
and hardware systems, and an engineering compo-
nent – the development of working tools for design-
ers and integrators of avionics systems.

The basic principles on which research and tools
are built are as follows:

–	 openness – as a necessary condition for cooper-
ation with the international research community;

–	 reliance on international standards;
–	 a combination of mathematical rigor in the

choice of proposed solutions and ensuring the avail-
ability of these solutions for engineers;

–	 focus on support and integration of various
processes of the life cycle of systems: definition and
analysis of requirements, design, integration and
verification of software and software and hardware
systems.

Currently developed MASIW tools allow to solve
such tasks.

1.	Creating, editing and managing models in AADL:
1)	creating / editing models using a text or graphic

editor;
2)	support for team development with the ability

to track and make changes to individual elements of
the model;

3)	support for the re-use of third-party AADL
models.

2.	Analysis of models:
1)	analysis of the structure of the software and

hardware complex – the sufficiency of hardware
resources, consistency of interfaces, etc.;

2)	analysis of data transmission characteristics in
the AFDX network – time of delivery of messages
from sender to recipient, depth of queues of transmit-
ting ports, etc.;

3)	simulation of a model of software and hardware
with the generation of user-defined reports on the
results of the simulator.

3.	Synthesis of models:
1)	the distribution of functional applications from

computing modules, taking into account the resource
constraints of the hardware platform and taking into
account additional constraints on the reliability and
security of software and hardware;

2)	generation of CPU computing time allocation
between functional applications (application launch
schedule cyclogram for ARINC-653 compatible real-
time operating systems).

4. Generation of source code / configuration data:
1)	development of specialized code / configuration

data generation tools, based on the provided software
interface (API);

2)	generation of configuration files for
VxWorks653 RV and AFDX network end devices.

Model creation, editing and management, as
well as code and configuration data generation are
implemented using common Eclipse environment
extensions, such as Eclipse Modeling Framework,
Graphical Editing Framework, Eclipse Team Provid-
ing, SVN Team Provider, GIT Team Provider. When
implementing these capabilities, we mainly had to
solve engineering problems, so in the following sec-
tions we will focus in more detail on the implementa-
tion of support for analysis and synthesis of models,
where the main research tasks were concentrated.

Analysis of models. When it comes to the analy-
sis of models, it means the derivation of new proper-
ties of the model as a result of considerations about its
already known properties. For example, the result of
the analysis may be an estimate of the maximum time
between sending a message and its delivery based on
an analysis of the path of the message and the charac-
teristics of the components encountered in this path.
The most important type of model analysis is its ver-
ification, ie verification of the model's compliance
with the requirements for it. Other types of analysis
are usually used as an intermediate step in the verifi-
cation process.

Requirements for OEC architecture arise from a
variety of sources.

–	 These may be design requirements for the air-
craft and the OEC architecture – these requirements
in the process of analysis are clarified and decom-
posed into requirements for individual components
of the system.

–	 Project often regulates the requirements for
the design and organization of architectural models,
which are described in the so-called model design
standard.

–	 Another source of requirements is the restric-
tion on the area of permissible use or on the permis-
sible configurations of the simulated components
(usage domain rules).

–	 The author of a library model component may
impose requirements on the consistent use of this
component.

–	 There are also requirements imposed by model
analysis tools or tools that are necessary to be able to
perform the relevant analysis.

Since when modeling the system there is a need
to detect errors as early as possible, the task is to ana-

107

Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences. № 1 (2021)  ISSN 2413-6549

lyze the model, which has unspecified components
or components with a still unknown structure. Some-
times in such cases for some kind of analysis enough
assumptions about the raw components. For example,
the system has a process A with an unknown imple-
mentation. However, it is assumed or known that
on average every 100 ms it generates a data packet
with an average size of 100 bytes, intended for pro-
cess B. In this case, the components that provide net-
work interaction are described in detail in the model.
Then such an incomplete model can be analyzed in
terms of network interaction, process delays, buffer
occupancy of network components, and so on.

Types of model analysis. Types of analysis dif-
fer in the method of its implementation (static or
dynamic) and aspects of the object under study (the
rough division is aspects of the structure or architec-
ture of the system and aspects of behavior, function-
ing of the system).

The dynamic analysis implies that some patterns
are clearly set, according to which there is a change
in the model (the internal state of the components, the
relationships between them) and interaction with the
environment. During such analysis, actions are per-
formed according to the given regularities, obtaining
new states of components, new connections, ensuring
interaction with the environment. Further (depending
on the checked requirements) there is an analysis of
the received condition or sequence of states and, for
example, an estimation of their correctness.

The static analysis uses a mathematical descrip-
tion of the components of the model, which is com-
pared with the description of the requirements for
them. In the course of the analysis the comparison of
requirements, calculation of characteristics of com-
ponents on which further conclusions about correct-
ness or incorrectness of the analyzed model are made
is carried out.

The analysis of model behavior considers the
characteristics that arise only when considering how
components behave over time, how they interact with
the world around them, what events and how they
react, what events and data they generate, how they
change their internal state. The structure analysis con-
siders the characteristics of how the components are
connected, what properties these connections have,
what are the capabilities and directions of data trans-
mission and events, which components have access to
certain resources and so on.

Methods and aspects of modeling can be com-
bined in any way, then, in sections 5.3-5.6, all four
possible combinations are considered.

Input data for analysis. The input data for the
analysis is a model of software and hardware com-
plex, which describes the structure and character-
istics / properties of the elements of the complex.
The previously considered model description lan-

guages (UML and AADL) allow to describe in detail
the structure of the developed complex, up to the
description of each sensor, button, etc. As practice
has shown, such a model is redundant for most types
of analysis. Much of the model is ignored by spe-
cialized analysis tools, and as a result the tool has
to do extra work to sample essential data from the
model of the complex. In addition, model descrip-
tion languages give the model developer some free-
dom in choosing which entities will describe cer-
tain components of the developed complex (UML
to a greater extent, AADL – to a lesser extent). At
the same time, when developing an analysis tool, it
is possible to accurately determine the structure of
the input data, which does not depend on what spe-
cific entities describe the model of the software and
hardware complex. Therefore, in the development of
the MASIW tool, the concept of so-called represen-
tations was proposed. View is a specialized model
of the entire software and hardware complex or a
certain part of it, which represents a set of essential
data in a form convenient for processing, as is the
case with representations in database management
systems. To create a specialized representation, a set
of adapters is used – the rules by which the original
model is transformed into a specialized and, if neces-
sary, vice versa. This approach allows you to abstract
from how the developer will describe the model of
the complex or part of it (what entities will be used
and even what model description language will be
used). Due to this, the developed analysis tools can
be reused in other modeling tools.

Static structural analysis. The structure of the
model can be understood as a graph. the nodes of
which are the components of the model, and the arcs
are the connections between the components. Types
of connections may differ in different modeling lan-
guages. For example, the relationship between two
components may mean that one component is part of
another, or that one component is a hardware resource
on which another, software component is running.

The structure of the model may contain informa-
tion about the composition of the components of the
model (of which components-parts it consists), the
location of the components, the degree of connectiv-
ity of the components, etc. Most often, modeling lan-
guages allow you to compare the components of the
model attributes, ie some scalar values. In this case,
they also become part of the structure of the model
and can be used in structural analysis. For example,
you can analyze a model to see if the values of an
attribute with some specified name in all the compo-
nents in which it is defined belong to some specified
set of valid values.

One of the possible attributes of the components
may be the component type. Examples of the use of
type in structural analysis can be the following tasks:

108

Вісник Запорізького національного університету. Фізико-математичні науки. № 1 (2021)  ISSN 2413-6549

to find out whether all components of some type con-
tain an attribute with some given name. Or another
example: find out if all components of type A are part
of any of the components of type B.

In modeling languages that aim to describe the
structure of the model (as opposed to behavioral tar-
gets), structural analysis of the model is more con-
venient than behavioral analysis. The reason for this
is that when using such modeling languages, the
structure of the model may already be present, while
the behavior is not yet fully defined or described. As
a result, a number of analyzes can be performed in
advance, before a more time-consuming operation to
determine the behavioral component of the model.

To organize and automate static structural analysis
it is necessary to solve the following tasks:

1)	how to specify what needs to be analyzed (in
particular, what condition of correctness of structure
of model should be checked and what language should
be chosen for the description of this condition);

2)	how to set the context of the analysis (for which
part of the model structure the analysis should be
performed) – most often, the analysis should be per-
formed on the whole model, although it is possible,
for example, that the analysis should be performed
only on components that are part of this model only
some specified type;

3)	how to perform a given analysis for a given part
of the model;

4)	in what form to present to the developer the
result of the analysis.

All these tasks arose during the development of
a tool for static verification of the correct structure
of models in the MASIW environment. In this envi-
ronment, AADL is used as the simulation language.
The structure of the model in this language is hier-
archical with respect to the inclusion of some com-
ponents in others. The AADL model also contains a
hierarchy of types that describe component classes.
The MASIW environment instantiates the model by
generating instances of all components and combin-
ing these components as required by the semantics
of the AADL language, taking into account all inher-
ited and predefined attributes. As a result, the analysis
tools work with an already prepared instance of the
model and they do not need to know about the diffi-
culties of transforming the declarative AADL model
into an instance of the architectural model of the soft-
ware and hardware complex.

According to the context of the analysis, there are
usually global conditions of correctness and compo-
nent conditions of correctness. Global correctness
conditions represent limitations on the model as a
whole. Component correctness conditions describe
restrictions on certain types of components. Compo-
nent conditions are sometimes referred to as ‘invari-
ant properties of components’.

To be able to automatically analyze the model to
meet the requirements, the requirements must be for-
malized and described in machine-readable form. To
do this, you must have a language for writing formal-
ized requirements. Currently, MASIW supports the
description and verification of the correctness of the
architectural model in REAL (Requirements Enforce-
ment Analysis Language) [15].

REAL was proposed in 2010 at Telecom ParisTech
(France) and has been supported by several research
laboratories around the world. This language is based
on the apparatus of set theory. The author of the lan-
guage tried to make the language as convenient as
possible for engineers engaged in modeling and with
basic skills of imperative programming. However,
this language proved to be unsuitable for practical
use due to its limited functionality, and high-quality
documentation on this language did not appear in the
open press [16].

As practice has shown, the REAL language has
a number of serious shortcomings. First, it does not
support all data types and components of the AADL
language (in particular, it does not support values
with units of measure). Second, the viona does not
support component correctness conditions. Third, the
language does not have the means to reuse some of
the conditions in others (which is especially true if the
verification of several conditions requires the same
calculations). In addition, not all conditions of cor-
rectness are convenient to represent in the imperative
form, and the REAL language does not contain means
for the non-imperative description of conditions of
correctness.

To partially solve these problems, we have made a
number of changes to the REAL language. Moreover,
we aimed to make static analysis not so much a means
of demonstrating the correctness of the model on
AADL, as a means of finding errors in the model. To
do this, we, without formally changing the language,
proposed a way to annotate the text of the statement
in REAL in order to document its semantics. This
documentation is used by our tool when construct-
ing a verification report to demonstrate which valid-
ity conditions were verified, on which components
the validity conditions were verified, what the veri-
fication status was on the components (which com-
ponents were found to be in violation of the validity
conditions and which were not), the reason violation
(if it was specified in the comments-annotations).

Static behavioral analysis. The purpose of static
analysis of the behavior of the system model is to
obtain mathematical methods for estimating the limit
values of various characteristics of the behavior and
interaction of system components.

One of the most important behavioral character-
istics is the reaction time of the system to external
events. The reaction time is affected by both the speed

109

Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences. № 1 (2021)  ISSN 2413-6549

of event processing and the time of delivery of infor-
mation between components. At the heart of the IMA
architecture is the idea of dividing hardware resources
between many aviation functions while ensuring the
absence of unintentional influence of one function on
another. The first step in this direction was the sepa-
ration of computing resources. The next step was the
virtualization of data buses, which since Airbus-380
is based on AFDX technology [5].

AFDX is built on the basis of ordinary Ethternet,
but has been modified to provide the determinacy,
stability, security, reliability required to meet the cer-
tification requirements. A key element of AFDX in
this regard is the concept of a virtual channel (Virtual
Link), which is essentially a virtual wire equivalent
to a physical wire between the sender and recipient
of messages. The virtuality of the wires reduces the
weight, power consumption, complexity of the laying
and, most importantly, the cost of maintenance and
network development, as the laying of the physical
cable is replaced by a modification of the configura-
tion tables in the switches.

In fact, the components that generate and receive
messages may be outside the AFDX network. These
are either specialized control functions contained in
sensors and actuators, or programs that run on com-
puting modules. In all cases, these components are
connected to the AFDX network through one or more
intermediate gateways, which can communicate with
several different data protocols.

Analysis of data transmission in the AFDX net-
work

AFDX technology is based on full-bandwidth
switched Ethernet, so conflicts and delays on the
lines during data transmission do not occur. The total
packet delivery time is equal to the sum of the packet
transmission times on the lines plus the delays in the
switches [16].

Queues are installed on the output ports of the
switches. Thus, the delay in switches can be very
variable due to the merger of different virtual chan-
nels competing for each output port. Therefore, to
determine the upper limit of the total packet transmis-
sion time, it is necessary to analyze the delays in each
output port of the switch.

Another important behavioral feature of the AFDX
network is the guarantee that there is enough space in
each queue to store all incoming packets. In practice,
for each queue in the network, the upper limit of the
amount of data in this queue is estimated.

There are several analytical methods for calculat-
ing the estimate of the upper limits of packet delivery
time and queue sizes: Model Checking, Trajectory,
Network Calculus. Everyone has their advantages
and disadvantages. The main disadvantage of most
methods is the so-called pessimism – that is, obtain-
ing a deliberately higher estimate due to some

assumptions or rough calculations. In addition, a sig-
nificant disadvantage of the Model Checking method
is that when the size of the network increases, it very
quickly leads to a combinatorial explosion. Only
Trajectory and Network Calculus methods are suit-
able for industrial use.

The Trajectory method
The Trajectory method [17] is based on the anal-

ysis of the worst case scenario that can occur with a
packet on its trajectory. The occupancy interval for
packet f in the output port p is the time interval during
which f can be processed in p. The Trajectory method
assumes the longest employment interval in each port.
For each competing channel, the maximum number
of packets that can delay the sending of packet f from
port p during the busy interval is estimated.

When calculating the upper limit of packet deliv-
ery time for a given virtual channel, it is assumed that
the packet f is on the output port p in the queue, which
is already the maximum number of packets of all
other virtual channels that can delay sending packet f.

Estimation of the upper limits of queue sizes by
the Trajectory method is performed as follows. It is
necessary for each source port to find the maximum
of the queue sizes among the busy intervals of all vir-
tual channels sent through this port. This value will be
the upper limit of the queue size of this port.

The Network Calculus method
In the Network Calculus method, the flow of infor-

mation through a specific network node is a function
of the flow. The function of the flow R (t) from time
is a function whose value at time t is the total number
of bits that entered this node from the moment t0 = 0.

Since the nature of the flow function in this node,
in general, is influenced by many different factors,
its exact definition is quite difficult. To analyze
information flows, the Network Calculus method
uses so-called arrival curves, which majorize the
flow function ‘evenly’ from any point in time: the
incoming flow curve α (t) R (t) is such a non-de-
creasing function that for any 0≤s≤t the inequality
R (t) – R (s) ≤ α (t-s) is true.

If the information flow pretends to be a periodic
sequence of packets of limited length, the function R (t)
is a ‘step’ function. The input curve for a function of
this kind is the function γr,b(t) = rt + b, where r is the
average flow rate, b is the maximum packet size.

In addition to the input curve, which is a ‘repre-
sentative’ of the flow function, the Network Calcu-
lus method in each network node considers a service
curve (service curve), which describes the amount
of processed information in the node to a given point
in time.

Consider a situation in which a node processes
information at a constant speed R (usually this speed
corresponds to the bandwidth of the communication
line at the output of the node), but before process-

110

Вісник Запорізького національного університету. Фізико-математичні науки. № 1 (2021)  ISSN 2413-6549

ing introduces some delay limited by time T (usually
this time corresponds to the maximum technological
delays in the delivery of information within the node
from input to output). In this case, the serving curve
at this node is equal to βR, T (t) = max {0, R (t-T)}.

The maximum delay that the information from the
stream with the input curve α receives in the node that
provides the service curve σ, is estimated from above
by the value of the maximum horizontal (ie on the
axis ‘time’) deviation from α to σ. For the case α = γr, b
and σ = βR, T the size of the maximum delay is equal
to T + b / R.

The maximum amount of raw information from
the stream with the input curve α in the node that pro-
vides the service curve σ is estimated from above by
the value of the maximum vertical (ie along the axis
‘information’) deviation from α to σ. For the case α =
γr, b and σ = βR, T the maximum amount of raw infor-
mation is equal to γr, b (T) = b + rT.

The use of coarsening in the form of incoming
curves instead of flow functions leads to the fact that
as the packet passes through the nodes of the network,
the input curve becomes more ‘rough’. In particular,
for the case where the node input curve for the input
stream is α = γr, b, and the serving curve is equal to
σ = βR, T, the input curve for the output stream (it will
be the input curve for the input flow of the next node
on the path of this packet) is equal to γr,b+rT, ie as the
packet of network nodes passes, the second parame-
ter of the function γ increases, so that on subsequent
nodes, respectively, estimates of delay time and the
amount of raw information increase.

If we compare Network Calculus and Trajectory
with each other, we can not say about the clear advan-
tage of one of the methods. Although in many cases
Trajectory gives more accurate estimates of the worst
time than Network Calculus, there are network con-
figurations where the opposite is true.

Dynamic behavioral analysis. Dynamic analysis
of behavior allows to obtain less pessimistic estimates
of behavioral characteristics, compared with static
analysis. In addition, sometimes the use of dynamic
analysis allows the analysis in cases where it is stat-
ically impossible to perform or it requires too many
resources (too much complexity of the model is diffi-
cult and difficult to analyze the mathematical descrip-
tion of components, combinatorial explosion, etc.).
However, it should be borne in mind that dynamic
analysis is performed in a specific performance, not
in the worst case, and requires a specific context of
work: input data and impacts [18].

Dynamic behavioral analysis requires that the
behavior of the components be specified in the model
in some executive way. For the correct use of feasible
models, it is important to organize work with model
time, with the transfer of information and events
within the model.

This problem is well solved using a discrete-effec-
tive approach to behavior modeling. In this approach,
the work of the component is presented as a set of
‘events’ – acts of action to change the state of objects
and interact with other components and the outside
world at certain points in time.

This approach has proven to be the most suit-
able for modeling the behavior of computer systems,
which are complex of onboard equipment IMA sys-
tems. On the one hand, it is quite powerful for mod-
eling such systems, on the other hand, this approach
is much easier to apply (in contrast to the even more
powerful approach of continuous simulation, which
faces the solution of nonlinear differential equations
and used in modeling physical processes).

To support the discrete-event paradigm of behav-
ior description, the MASIW tool has implemented a
library that supports stimulation time and provides
processing of events arising from the simulation sys-
tem, and synchronous and asynchronous data trans-
mission. To ensure these possibilities, a continuations
programming approach was used, supported by the
Matthias Mann's continuations library.

The AADL language has its own means of
describing behavioral semantics for some elements
of the model. However, these tools are not enough
to describe the behavior of applications, devices
and other complex components of the model. There
are standardized extensions of AADL – Behavioral
Model Annex [19] and BLESS – that allow you to
describe the behavior of model components based on
finite state machines that work with time and events.

At the moment in the MASIW tool the feasi-
ble model of behavior is set in Java language. This
allowed us to quickly implement support for dynamic
behavioral analysis of AADL models, and at the
moment the tool can already be used for such analy-
sis. However it is necessary to put behavior of com-
ponents in a non-standard way. On the other hand,
the use of Java will allow in the future to implement
translators from standard behavior task languages
without the need to rework the part responsible for
the actual dynamic analysis.

As mentioned earlier, it is often advisable to con-
duct an early analysis of the system on incomplete
models. In such models, some components do not yet
have a detailed description, and often there are only
some assumptions about how they behave in this sys-
tem. In this case, the analysis can be performed by
recording the assumptions in the form of a particular
behavior of the components. The MASIW tool sup-
ports a special method of parameterizing the model,
which simplifies the description of different assump-
tions about the components for different variants of
model analysis.

Dynamic structural analysis. This type of anal-
ysis is required for reconfigured systems, ie for sys-

111

Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences. № 1 (2021)  ISSN 2413-6549

tems whose structure may change during operation.
In the general case, there may be a dependence of the
model structure on the input influences or the envi-
ronment of the modeled system, so it is not always
possible to statically analyze the implementation of
all necessary structural constraints.

In its pure form, dynamic structural analysis
involves verifying that all achievable states of the
architectural model are structurally correct, ie meet
the requirements for the correctness of the structure
of the model. To check the properties of the model
structure obtained at any time during the execution
of the model, you need to get the changed structure
and run checks on the new model. This check is sim-
ilar to a static structural check, the input of which is
fed to the model obtained in the dynamics. The diffi-
culty here is that you do not always need to check all
the properties in all states, but you need to specify in
some way which checks to perform at what time.

Dynamic structural analysis can also check
the properties that are set not on one state of the
model structure, but on the sequence of such states,
although such analysis is rather an analysis of the
behavioral aspect of the functionality for reconfig-
uring the system.

Traditionally, among the properties of objects over
time, there are safety properties and survivability
properties. The former require that something never
happen, while the latter require that something ever
happen. An example of a security property is the
requirement that immediately after the occurrence
of event X, a given component A will have a sub-
component B, and the survivability properties – the
requirement that after the occurrence of event X, a
given component A will sooner or later have a sub-
component B.

The already considered requirement of structural
correctness of all achievable states is the simplest
example of a safety property. Dynamic verification
of more complex security properties can be imple-
mented on similar principles, given that part of the
information used in the static structural analysis of
the fixed state of the architectural model should be
calculated based on the properties of previous states
of the model.

Checking the survivability properties is a signifi-
cantly different task. The main feature of these prop-
erties is that they are violated only at infinity. There-
fore, the task of verifying such properties cannot be
solved by pure dynamic analysis and requires the
development of special tools.

Automatic synthesis of models. The designer of
the IMA system has a task to build an architecture
that must meet the requirements of different types:
the adequacy of hardware resources, fault tolerance,
reliability, security of the system as a whole, limiting
the maximum allowable time for delivery of mes-

sages between components, requirements for timely
functions etc.

To a certain extent, the art of experienced spe-
cialists, armed in addition with the tools of verifica-
tion of the constructed architectural model, allows
to solve such a problem. However, this approach
has limited scalability and high subjectivity. System
design automation tools that meet a set of require-
ments and constraints can make designers work
much more efficiently.

In many cases, individual parts of the model can
be automatically synthesized based on the infor-
mation contained in another (‘source’) part of the
model, which describes the basic logical relation-
ships between the components and the requirements
for the resulting architecture. In this case, the devel-
opment of the original part of the model is much eas-
ier than the development of the corresponding syn-
thesized part. In addition, the source part in any case
must be described in the design process. For exam-
ple, based on the source information about the avail-
able set of applications and their hardware require-
ments, as well as information about the architecture
and capabilities of computing modules, it is possible
to automatically synthesize the binding of applica-
tions to these modules to meet all resource adequacy
and scheduling requirements.

The MASIW design environment offers the fol-
lowing work scenario for developing a model of the
designed system. The designer develops the neces-
sary source part of the model, then launches an auto-
matic synthesis algorithm, which based on the avail-
able information contained in the source part of the
model, completes the architecture model with new
parts, which can be adjusted manually or regenerated
if the original part of the model is updated.

Automatic synthesis of schedules for strictly
periodic tasks. When dividing hardware resources
between several applications, one of the most import-
ant aspects is the timely provision of CPU resources
for all tasks in the system. This aspect is usually dealt
with by a special operating system task scheduling
subsystem, which allocates CPU time to functional
applications based on a pre-prepared schedule.

As initial data in the task of construction of the
schedule for each of periodic tasks are set:

1)	task start period;
2)	task execution time on one start-up period.
Classical algorithms for scheduling periodic tasks

work only when the start time of the task within
the period is allowed to vary at different periods of
its execution. However, there is currently a need to
compile schedules in which the time between adja-
cent launches of one periodic task would be fixed
and equal to the length of the period. This additional
requirement of strict periodicity does not allow the
use of classical planning algorithms in the scheduler.

112

Вісник Запорізького національного університету. Фізико-математичні науки. № 1 (2021)  ISSN 2413-6549

The main difficulty of the algorithm for planning
strictly periodic tasks is the search for starting points
for all tasks, so that it was possible to build the actual
schedule. This search is an NP-complete task.

In addition, we use the strategy of finding start-
ing points implies a search in the first place of such
options that provide the longest possible continuous
execution of the first ticks after starting each task.

In general, this approach allows you to quickly get
a solution to the problem of scheduling for strictly
periodic problems [20].

Automatic synthesis of IMA system architecture.
As initial data in the problem of synthesis of architec-
ture of IMA the following are set:

–	 functional applications and logical data flows
between them, as well as between applications and
sensors / actuators;

–	 a set of needs for functional applications to
hardware resources (memory, computing power, etc.);

–	 a set of requirements for the maximum time
of delivery / processing of messages in logical data
streams;

–	 a set of available hardware components (com-
puting modules, switches, etc.) in conjunction with a
description of their capabilities and limitations on the
scope of their permissible use (usage domainrules).

You need to automatically build the architecture of
the IMA system, which includes:

–	 composition and communication of hardware
components;

–	 placement of functions on computing modules;
–	 details of the organization of connections in the

AFDX-network;
–	 work schedule of application and system parti-

tions ARINC-653 compatible operating systems.
The system architecture must meet all safety and

performance requirements.
The synthesis task is divided into two major

subtasks:
1)	placement of applications from computing

modules so that it was possible to build a schedule on
each module;

2)	assignment of virtual channels between com-
puting modules and distribution of switches on vir-
tual channels so as to meet the requirements for mes-
sage delivery time.

The solution of the first problem is based on the
consideration of the set of periods of application
launch and on the application of numerical reason-
ing, which allow to divide the set of periods into
such subsets that for each obtained subset there
are guaranteed starting points of the corresponding
applications [21; 22].

The solution of the second problem is based on
the use of genetic algorithms, at each step of the
genetic algorithm is built a population consisting of
N correct topologies of the AFDX-network. Each

topology of the new population is obtained either as
a result of a small modification (mutation) of some
topology of the previous population, or as a result of
crossing some two topologies of the previous popula-
tion. When crossing, the resulting topology receives
the maximum number of common properties (in the
sense of connecting components together), which are
in both source topologies.

After the next population is constructed, the
incoming topologies are ranked in such a way that
N topologies that best meet the requirements for mes-
sage delivery time are selected for further construc-
tion. Static methods (Trajectory, Network Calculus)
are used to estimate the delivery times obtained in
this topology, and the main component of the ranking
function looks like this:

Σ eT-τ,
where the summation is performed on all chan-

nels for which the delivery time limit is set, T is the
delivery time for this channel in this topology, τ is the
specified maximum delivery time for this channel.

Development prospects. At the moment, the
MASIW tool allows to perform only part of the tasks
assigned to the system integration group and further
plans to expand the functionality of its functionality
in many areas.

In the context of static structural analysis of mod-
els, the main direction of development is the devel-
opment of a full-featured language for describing
constraints on the structure of an architectural model
convenient for a compact description of both global
and component constraints. In our opinion, this lan-
guage should be based on one of the well-known
existing programming languages in order to be able
to reuse ready-made libraries with a variety of func-
tionality and simplify the task of training engineers.
A good contender for the role of such a language is
the Python language, which due to the concept of dec-
orators provides an opportunity to form a specialized
language based on standard syntax, which means the
ability to use the existing interpreter and other tools
unchanged for a new language. Other promising areas
are the development of libraries of ready-made parts
of the code for their reuse in checking the conditions
of correctness and the implementation of static struc-
tural analysis of reconfigured systems [23; 24].

In the context of static behavioral analysis of mod-
els, a promising area of development of supported
analysis methods is the analysis of data transmission
in the system as a whole, and not only within the
AFDX network. The main difficulty here is to take
into account the behavior of all components of the
gateways located between the sender / recipient of the
message and the AFDX network.

In the context of dynamic behavioral analysis
of models, the main direction of development is to
support standard ways of setting behavior for the

113

Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences. № 1 (2021)  ISSN 2413-6549

components of the model (Behavioral Model Annex,
BLESS). Another very important area of develop-
ment of this type of analysis is the implementation of
the possibility of using the simulator in combination
with a stand of semi-natural modeling and in combi-
nation with external emulators of hardware platforms.
This will save time on developing detailed models
for existing system components that are available for
use on the stand or in a virtual environment, which
reduces the total time and cost of preparation for test-
ing the model.

In the direction of dynamic static analysis of mod-
els, only research work has been carried out, so the
implementation and conduct of experiments with
this method of analysis is another task for the future
development of the functionality of the tool.

In the context of automatic synthesis of models
promising areas of development are the support of
new types of constraints on the synthesized model,
research methods of incremental synthesis of archi-
tecture and automatic updating of the model when
changing the initial requirements taking into account
manual modifications of previous synthesized mod-
els. the degree of criticality of each function ensured
the smooth operation of the entire system, provided
the possibility of failure of individual components.

Another area for the development of MASIW
tools is the generation of documentation describ-
ing the architecture of the BWW system, as well
as the generation of project templates and source
code of functional applications that would already
include typical functions such as message pro-
cessing whose structure is already described in the
architectural model.

Conclusions. The complexity of modern aviation
systems and high requirements for their reliability
lead to the need to use shared resources (IMA archi-
tecture). When creating IMA systems, developers (in
particular, system integrators) face a number of tasks
and problems that they have not encountered before.
To solve these problems come to the aid of various
automation tools and computer development support.
The development of this area is primarily associated
with the use of various models, including architec-

tural models of software and hardware systems. The
corresponding group of technologies is called Model
Driven System Engineering (MDSE).

The implementation of MDSE technologies
requires serious research and well-thought-out engi-
neering solutions. One of the sources of complexity
in the development and implementation of MDSE is
the need to take into account the needs and prefer-
ences of different groups of professionals, as models
are used both as input for synthesis and verification,
as a design tool and as a means of communication
and cooperation. This article is devoted to the meth-
ods and tools for solving these problems. The article
pays special attention to the issues of integration of
methods of formal specification and formal analysis
of avionics models with methods of design, imple-
mentation and integration of avionics systems, which
were developed in this field earlier.

The MASIW tool simplifies the solution of a
number of tasks related to the development of avi-
ation systems. It allows you to conveniently and
clearly create and edit models of such systems in
AADL, as well as analyze such models for compli-
ance with various requirements related to both the
structure and behavior of the model (calculate vari-
ous temporal characteristics, predict the behavior of
the simulated system in different situations, includ-
ing non-standard behavior of components and fail-
ures within the system).

In addition, MASIW facilitates architecture
design through the implementation of a number of
model synthesis algorithms. This allows, in particu-
lar, to distribute the tasks on the computing units so
that each task was allocated enough CPU time, and
to generate an on-board network model and network
resource allocation scheme according to the needs of
system components.

The MASIW tool is constantly evolving. This
development is based on close cooperation with cus-
tomers, potential users and with the international
community of developers of open standards and open
tools to support the development, integration and ver-
ification of responsible systems based on the use of
modeling tools.

BIBLIOGRAPHY
1.	 Hayley J., Reynolds R., Lokhande K., Kuffner M. and Yenson S. (2012) Human-Systems Integration and

Air Traffic, Control Lincoln laboratory journal, no. 19(1), pp. 34-49.
2.	 Parkinson P. and Kinnan L. (2015) Safety-Critical Software Development for Integrated Modular Avionics,

Wind River, vol. 11, no. 2.
3.	 Tiedeman H. and Parkinson P. (2019) Experiences of Civil Certification of Multi-Core Processing,

Systems in Commercial and Military Avionics Integration Activities, vol. 1(2) pp. 419–428. doi: https://
doi.org/10.3182/20110828-6- it-1002.01501.

4.	 Ghannem A., Hamdi M., Kessentini M. and Ammar H. (2017) Search-based requirements traceability
recovery: A multi-objective approach, Proc. IEEE Congress on Evolutionary Computation (CEC),
pp. 1183–1190. doi: https://ieeexplore.ieee.org/document/7969440.

5.	 Neretin E. (2019) J. Phys.: Conf. Ser. 1353 012005. doi: https://iopscience.iop.org/article/10.1088/
1742-6596/1353/1/012005.

114

Вісник Запорізького національного університету. Фізико-математичні науки. № 1 (2021)  ISSN 2413-6549

6.	 Road vehicles – Controller area network (CAN) – Part 1: Data link layer and physical signaling.
7.	 Road vehicles – Controller area network (CAN) – Part 2: High-speed medium access unit.
8.	 Murphy B. and Wakefield A. (2009) Early verification and validation using model-based design The

MathWorks.
9.	 SAE International Architecture Analysis & Design Language (AADL).
10.	 The ATESST Consortium 2010 East-adl 2.0 specification. URL : http://www.atesst.org.
11.	 ISO/IEC 19505-1:2012 Object Management Group Unified Modeling Language (OMG UML).
12.	 Object Management Group (OMG) Systems Modeling Language SysML, Version 1.3.
13.	 Object Management Group (OMG) UML Profile for MARTE: Modeling and Analysis of Real-Time

Embedded systems, Version 1.1.
14.	 De Niz D (2007) Diagrams and Languages for Model-Based Software Engineering of Embedded Systems:

UML and AADL, SEI.
15.	 Gilles O. and Hugues J. (2010) Expressing and Enforcing User-Defined Constraints of AADL Models,

Engineering of Complex Computer Systems (ICECCS).
16.	 URL : https://wiki.sei.cmu.edu/aadl/index.php/Osate_2_Lute.
17.	 Martin S. and Minet P. (2006) Schedulability analysis of flows scheduled with FIFO: application to the

expedited forwarding class, Parallel and Distributed Processing Symposium.
18.	 URL : http://www.matthiasmann.de/content/view/24/26/.
19.	 AS5506/2 SAE Architecture Analysis and Design Language (AADL) Annex Volume 2.
20.	 Zelenov S. (2011) Планирование строго периодических задач в режиме реального времени, Труды

ИСП РАН, Т. 20.
21.	 Konakhovych H., Kozlyuk I., Kovalenko Y. (2020) Specificity of optimization of performance indicators

of technical operation and updating of radio electronic systems of aircraft, System research and information
technologies, no. 3, pp. 41-54.

22.	 Kovalenko Y., Konakhovych H., Kozlyuk I. (2020) Specificity of optimization of performance indicators
of technical operation and updating of radio electronic systems of aircraft. International Journal of
Engineering Research and Applications (IJERA), vol. 10 (09), pp. 48-58.

23.	 Kozlyuk І., Kovalenko Y. (2020) Functional bases of the software development and operation in avionics.
Problems of Informatization and Management, no. 63, pp. 49-63.

24.	 Коваленко Ю.Б., Козлюк І.О. Реалізація програмного комплексу розроблення додатка інтегрова-
ної модульної авіоніки за стандартом ARINC653, Вісник Запорізького національного університету.
Фізико-математичні науки. 2020. № 2. С. 27–35.

REFERENCES
1.	 Hayley J., Reynolds R., Lokhande K., Kuffner M. and Yenson S. (2012) Human-Systems Integration and

Air Traffic, Control Lincoln laboratory journal, no. 19(1), pp. 34-49.
2.	 Parkinson P. and Kinnan L. (2015) Safety-Critical Software Development for Integrated Modular Avion-

ics, Wind River, vol. 11, no. 2.
3.	 Tiedeman H. and Parkinson P. (2019) Experiences of Civil Certification of Multi-Core Processing, Sys-

tems in Commercial and Military Avionics Integration Activities, vol. 1(2) pp. 419-428. doi: https://
doi.org/10.3182/20110828-6- it-1002.01501.

4.	 Ghannem A., Hamdi M., Kessentini M. and Ammar H. (2017) Search-based requirements traceabil-
ity recovery: A multi-objective approach, Proc. IEEE Congress on Evolutionary Computation (CEC),
pp. 1183-1190. doi: https://ieeexplore.ieee.org/document/7969440.

5.	 Neretin E. (2019) J. Phys.: Conf. Ser. 1353 012005. doi: https: //iopscience. iop. org/ article/ 10. 1088/
1742-6596/1353/1/012005.

6.	 Road vehicles – Controller area network (CAN) – Part 1: Data link layer and physical signaling.
7.	 Road vehicles – Controller area network (CAN) – Part 2: High-speed medium access unit.
8.	 Murphy B. and Wakefield A. (2009) Early verification and validation using model-based design The

MathWorks.
9.	 SAE International Architecture Analysis & Design Language (AADL).
10.	The ATESST Consortium 2010 East-adl 2.0 specification. [Electronic resource] Online: http://www.

atesst.org.
11.	 ISO/IEC 19505-1:2012 Object Management Group Unified Modeling Language (OMG UML).
12.	 Object Management Group (OMG) Systems Modeling Language SysML, Version 1.3.
13.	 Object Management Group (OMG) UML Profile for MARTE: Modeling and Analysis of Real-Time

Embedded systems, Version 1.1.

115

Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences. № 1 (2021)  ISSN 2413-6549

14.	 De Niz D (2007) Diagrams and Languages for Model-Based Software Engineering of Embedded Systems:
UML and AADL, SEI.

15.	 Gilles O. and Hugues J. (2010) Expressing and Enforcing User-Defined Constraints of AADL Models,
Engineering of Complex Computer Systems (ICECCS).

16.	 [Electronic resource] Online: https://wiki.sei.cmu.edu/aadl/index.php/Osate_2_Lute.
17.	 Martin S. and Minet P. (2006) Schedulability analysis of flows scheduled with FIFO: application to the

expedited forwarding class, Parallel and Distributed Processing Symposium.
18.	 [Electronic resource] Online: http://www.matthiasmann.de/content/view/24/26/.
19.	 AS5506/2 SAE Architecture Analysis and Design Language (AADL) Annex Volume 2.
20.	 Zelenov S. (2011) Planirovanie strogo periodicheskih zadach v sistemah real'nogo vremeni, Trudy ISP

RAN vol. 20 (in Russ.).
21.	 Konakhovych H., Kozlyuk I., Kovalenko Y. (2020) Specificity of optimization of performance indicators

of technical operation and updating of radio electronic systems of aircraft, System research and informa-
tion technologies, no. 3, pp. 41-54.

22.	 Kovalenko Y., Konakhovych H., Kozlyuk I. (2020) Specificity of optimization of performance indicators
of technical operation and updating of radio electronic systems of aircraft. International Journal of Engi-
neering Research and Applications (IJERA), vol. 10 (09), pp. 48-58.

23.	 Kozlyuk І., Kovalenko Y. (2020) Functional bases of the software development and operation in avionics.
Problems of Informatization and Management, no. 63, pp. 49-63.

24.	 Kovalenko Y., Kozlyuk І. (2020) Implementation of the integrated modular avionics application develop-
ment complex according to the ARINC653 standard, The Bulletin of Zaporizhzhіa National University.
Physical and mathematical Sciences, no. 2, pp. 27-35.

