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We study the Timoshenko model of bending beam vibrations, that in-
cludes the beginning from a brief general consideration and the fast tran-
sition from n-dimensional Euclidean space to 4-dimensional space with
respect to spatial coordinates and time. As a result, the Timoshenko equa-
tion is obtained on the basis of a mathematical approach, without a cor-
rection coefficient (shear coefficient) as a special case of a more general
our extended refined equation. We investigate the problem of the effect
of liquid, as a special case of an elastic base, on shear in Timoshenko
elastic plate. It is shown that any media contacting with the plate reduce
the shear effect. The violation of continuity is noted, which has not been
considered previously. The works based on the Timoshenko model are
presented for a beam on an elastic base. In the case of a rectangular
change in the cross section, another matching problem immediately
arises, connected with appearing reflected and transmitted waves. From
the solvability of the problem for the phase velocity in the case of short
wavelengths (high frequencies), the yield to the characteristic is studied
and it is shown that in connection with the violation of continuity, the
applicability of the classical theory takes place at wavelengths of more
than 5 thicknesses. The problem of elastic plates floating on a liquid layer
is studied in detail, using various theories. Variational formulations with-
out taking into account the violation of continuity are considered and
commented, the separation of variables in the Timoshenko equation is
considered.
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Jocmimkeno Mozens THUMOIIEHKa 3THHHUX KOJHWBaHb OajIKH, 10 BKITIO-
Yae CHOYaTKy 3arajbHi MipKyBaHHS 1 Hepexill BiJ N-MIpHOTO €BKIiJOBa
npocropy R" 10 4-MipHOTO MpocTOpy BiAHOCHO MPOCTOPOBHX KOOPIH-
HaT X;,X,,X; i4acy t.Ha ocHOBi MaTemMaTHuHOTO MiX0Ny piBHSIHHS TH-

MOILICHKA 0JIepkKaHO 6e3 KOpeKTyro4oro koedimieHTta (koedilieHT 3CyBY)
SIK OKPEMHI BUIAJI0K OUIBIN 3arajIbHOTO pO3IIMPEHOTO piBHHHA. Jlocii-
JUKEHO 3aj1ady BIUTUBY PiJMHH K OKPEMHH BUIIAJ0K MPY>KHOT OCHOBHU B
mractiHi Tumormrenka. Ilokazano, mo Oyab-ske cepepoBHINeE, IO KOH-
TaKTye 3 TUTACTHHOIO HiBETIOE eeKT 3CyBy. BimmiueHo mopymeHHs Cy-
IJTBHOCTI, SIKE paHile He po3rsiaainocs. JlocimkeHHs, OCHOBaHI Ha MO-
nem TumolneHka, MpeaCcTaBIsIINCh i1 0Ky Ha TIPYKHii OCHOBI. Y BH-
MajgKy HPSMOKYTHOTO BHY IOINEPEYHOro IMepepidy BHHHUKAE iHIA 3a-
Jlaya, IOB’si3aHa 3 IOSBOI0 BiMOMTHX XBWIIb. 3 PO3B’S3Ky 3ajadi J10-
CIIIKYEThCST (pa3oBa MIBUAKICTH Y BHUNAJIKy KOPOTKHX JIOBXHH XBHIIb
(BHCOKI 4aCTOTH), BUSIBJICHO, 1110 y BUIAJIKY ITOPYIIECHHS CYLJILHOCTI 3a-
CTOCYBaHHS KJIACHYHOI TeOpil 0OMEKEHO JOBXXUHOIO XBHJIb, 1110 TIEPEBHU-
mye 5 ToBImyH O6anku. Ha ocHOBI pi3HUX Teopiil AeTalbHO BUBUEHO 3a-
Jlady Npo MpY)KHI IJIACTHHH, IO IUIABarOTh Ha pizkoMy mapi. Omucy-
IOTBCSL 1 0OTOBOPIOIOTECS BapialiiHi (opMyroBaHHA 0e3 ypaxyBaHHS
MOPYIIEHHS CYIMUJTLHOCTI, PO3TIISIAE€THCS BIJOKPEMIICHHSI 3MiHHUX B PiB-
HsHHI TUMOIIIeHKA.
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1. Introduction

The Cauchy-Poisson method was proposed
considering the bending vibrations of an elastic
beam-plate based on the equations of elastody-
namics (Cauchy, 1828) [1], (Poisson, 1829) [2].
A generalization of the Cauchy-Poisson method
to n-dimensional Eucledian space was ob-
tained in (Selezov, 2000) [3]. The violation of
continuity was shown in (Selezov, 2018) [4].

The violation of continuity in the Timo-
shenko model has been not investigated in all
previous considerations and it is an absolutely
new problem under consideration. That is why,
a numerous of traditional investigations of the
Timoshenko equation is not considered here.
Moreover, these investigations are else consid-
ered in detail in a book dedicated to the Timo-
shenko (P: Statement of the problem Grigolyuk
and Selezov, 1973) [5].

The paper consists of some points pre-
sented below. Statement of the problem in Eu-
cledian space presents the problem in Eucledian
space R" represented by a finite system of par-
tial differential equations. Corresponding
boundary-value problem and some assamptions
are considered; Extended refined equation in 4-
th dimensional space presents the problem in 4-

{XG R":—0 < (xl,xz,.
0=

X" >0, -h*<x*<h°.

We assume that hypersurfaces x* =+th®are

removed from the middle hypersurface x* =0
and it is considered the composition with re-

spect to x* =0. The case is considered when
conditions are given on hypersurfaces
x* ==+h®,

It is assumed that the model depends on a
finite number v of parameters ¢, r=1v.

P times

1 n. . . . _ 1
F [x oo XU ooy U Up gy ooy U el 3 e Uy o ’81""’8V]_ P (x...

dimensional Eucledian space and an extended
generalized refined equation including the Ti-
moshenko equation as a partcular case; Viola-
tion of continuity and the effect of elastic foun-
dation are noted and commented and the influ-
ence of the elasticity of the base on processes is
investigated; Wave propagation in elastic float-
ing plate presents the problem of wave propa-
gation in a floating elastic plate; On variational
formulations without violation of continuity
considers variational principles without the vi-
olation of continuity and an asymptotic ap-
proach which are based on the continuity of
elastic media; Separation of variables in the Ti-
moshenko equation shows the application of
the method of separation of variables.

2. Statement of the problem in euclidean
space
We consider in Eucledian space R"with
coordinates x%, gq=1, n a mathematical model

represented by a finite system of partial differ-
ential equations for which a boundary-value

problem is posed in a domain Qx[0,X" ],

X™ >0 bounded by hypersurfaces (the index is
fixed):

..,xs‘l,x5+1,...,x”‘1)< o0, }

Formally, such a model can be defined as a sys-
tem k of differential equations in partial deriv-
atives of p-th order with k unknowns u,

(izl,_k) and n arguments (Dunford &

Schwartz,
1969) [6]

P times

j=1(k-p)in Q.

The following system of boundary conditions on hypersurfaces x* =—h®, x* =h°® is defined

1 n. . .
fj[x yeen XU ey U Uy gy U 58

(P-1) times

Bicnuxk 3anopizbkozo HauionaibHozo yHieepcumeny

-Q, j=L(k-p). @)
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Here, the index after the “comma” denotes
differentiation with respect to the correspond-
ing coordinate, in the general case p #n it de-

pends on all possible partial derivatives up to
the p -th order inclusively, the position of the
hypersurface may depend on u, and their deriv-
atives. The solution of the boundary value prob-
lem (1), (2) consists of determination of the
functions u, transforming equations (1) into
identities, and in selection of a set of these func-
tions those functions that satisfy conditions (2).

3. Extended refined equation in 4- th

dimensional space

Further we consider 4-th dimensional space

with respect to spatial coordinates x , X, , X, and

time t. When constructing a generalized equa-
tion, dimensionless quantities are introduced,
taking thickness 2 h (m), shear wave velocity c,
(m/s), and elastic medium density o (kg / m)
as characteristic quantities

*

. 1
Uk:%ukv (Xl’x2)=%(xl’x2)’
t*—& q*—lq
2h G
h‘:l, cf:g.
2 p

In the study of wave propagation, dimen-

sionless quantities are introduced: 1" :%I is

» C | .
the wavelength, C = —is the phase velocity.
S
The extended differential equation for the
transverse coordinate u, =w, has the form (as-

terisks are omitted)

[(&e)-

0% . o*
—a, — V™ + —
i atz a3 at4 :|TM

2
~bV?V?V? +h, %vzvz —~

4 6
b, % v b, 5—6} ,
at at T™MC
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2

W, = {[1— d,v?+d, 6—2} +d,V?V? —
ot
™

6t2
In (3), the following notations are accepted:
W, (X, t) transverse deviation (deflection), t is

o? o’ . _
at T™MC

atime, (0, —q,) transverse load,

An operator with index K corresponds to
the Bernoulli-Euler equation (extended to
plates by Kirchhoff). The operator with the TM
index corresponds to the Timoshenko equation
(extended to plates by Ufland and developed by
Mindlin). The Rayleigh equation is included in
the operator TM with a, =0. An operator with

the TMC index corresponds to the extended
equation (constructed by Selezov). It follows
from the above analytical construction, as a spe-
cial case, the Timoshenko equation, but without
the introduction of a correction parameter (the
shear coefficient).

The Timoshenko equation is of hyperbolic
type as a generalization of 4-th order parabolic
equation, rather than 2-th order equation, which
only in this case has always been generalized
before.

With increasing frequencies. those. as the
wavelength decreases and the characteristic is
reached, violation of continuity occurs in ac-
cordance with the Timoshenko model.

When deriving the Timoshenko equation,
the slope of the tangent to the bend curve is pos-
tulated. those it is represented in the form
ow/ox =y +y where y is the bending defor-
mation, ¥ is the shear deformation. At high fre-

quencies and sharp inhomogeneities, this will
manifest itself.

4. Violation continuity and the effect
of elastic foundation

From the analysis (Selezov, 2018) [4], it
was found that the Timoshenko model is appli-
cable at wavelengths A of more than five thick-

nesses h, that is, %> 5 when the influence of

the thickness shear is already small and there is
no discontinuity. We considered a beam-strip of
an elastic plate, for which they were derived
strictly mathematically, following Cauchy and
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Poisson. refined equations, including the Timo-
shenko equation as a special case.

The effect of an elastic base was investi-
gated in (Selezov and Korsunsky, 1991) [7], in
which it was shown that this reduces the effect
of thickness shear in the Timoshenko model.
Note that water can also be considered as an
elastic base.

For the first time, a beam on an elastic foun-
dation was examined by Timoshenko (Timo-
shenko, 1956) [8]. After his emigration to
America, works appeared on the effect of an
elastic foundation on the shear deformation in
his equation. For example, in (Achenbach et al.,
1967) [9], the propagation of free elastic waves
in a plate lying on an elastic half-space was
studied. It was shown in (Yu, 1960) [10] that in
a three-layer plate, the effect of shear and iner-
tia of rotation of the outer plates relative to their
middle surfaces is negligible. In (Lloid and Mi-
Klowitz, 1962) [11], vibrations of an elastic
plate on an elastic base are considered.

In well-known works considering the Ti-
moshenko beam of variable cross-section, no
conditions were imposed on the value of the
permissible change in the cross-section, which
can lead to the violation of continuity. we pre-
sent only one of them (Shubov, 2002) [12].

5. Wave propagation in elastic floating plate

We consider the problem of the propaga-
tion of plane unsteady bending waves in elastic
plate located on a liquid surface of finite depth
d , assuming that intime t =0 astationary nor-
mal load at a point is applied to the surface

P = poP,(X) P, (t). The plate bending motions

are described by a refined theory, taking into
account the inertia of rotation and transverse
shear deformation (Grigulyuk and Selezov,
1973) [5], and the fluid is considered compress-
ible isentropic. The corresponding initial-
boundary-value problem is formulated to find
solutions to the system

D‘//xx_szh(V/+Wx):p1|l//n1 (4)

k*Gh(w,, +v,)— )
—PoW— 0, ¢t|X:0 +p = phw,,
P TPy _C52¢tt =0, (6)

pZXe(—oo, oo); Ze[—d, O]; te[O, oo).

Under boundary conditions

Bicnuxk 3anopizbkozo HauionaibHozo yHieepcumeny

W=, 5 @, =0 @)
and initial conditions for t=0
v=0 yw, =0, w=0;
W =0, ¢=0 ¢ =0
The boundary conditions (7) express the
equality of the vertical velocity components of

the plate and the liquid at the interface and the
impermeability condition at the bottom. Value

w (X, t) is the angle of rotation of the plate; ¢

(8)

is the potential of fluid velocities, p, and p,
are the densities of the plate and fluid,

k? :2/(2—v+«/0,5—v) is the shear coeffi-

cient, 1 =h®/12 moment of inertia of the cross
section, c, the speed of sound and fluid. In (4)

(8) and further, dimensionless quantities are in-
troduced by the formulas

h ghp,
«_ G * p
C Y =
0 \/g_h ® hJgh
r-L o= -9
h gh*p, ghp,
x A « Py
A = , po=—|(1=12
ghp, p.( )

The above statement (4)-(8) also includes
special cases. So, for an incompressible fluid
(c, & ), instead of the wave equation (6), the
Laplace equation ¢, +¢, =0 is solved; plate
motion is described by the classical Kirchhoff
theory:

DWxxxx + oW + O,W p2¢t|z:0 =Pp; (9)

the movement of the plate is described by the
equation taking into account only the inertia of
rotation:

DWxxxx —p1|W +

ttxx

+p1hth + p,W+ pz¢t|z=o =P,
v +w, =0;

(10)

the movement of the plate is described by the
equation, taking into account only the trans-
verse shear strain
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DWxxxx _p;D
k‘G
D .
+(1_ szh 5XXJ(,02W+ p2¢t|2:0 — p) — 0’ (ll)

Dy, —k’Gh(y +w, )=0.

To solve this problem, the integral Fourier
transforms in coordinate x and Laplace trans-
forms in time t are applied:

ttxx + pthtt +

o0

F(x)= J. f (x)e™dx;
f_(s):T f (t)e "dt.

The transition from the space of Laplace
images to the space of originals in some cases
is carried out by (Deutsch, 1956) [13]. In other
cases, the original is found by casting an inte-
gral of the Riemann-Mellin type.

1 c+i”

f(t)=——

f_ std ’
271 ). (s)e’ds

to the Fourier transform (Krylov and Skoblya,
1974) [14]

ct ©
e

f (t):Em[Re(f‘(sm Im(F(s))|e"dr,

wheres=c+ir.
In the general case, the solution of the prob-
lem (4)-(11) under consideration has the form

C+I )

47[|II

c—iy, —o0

770’(1 IKX+StdeS
5 ( CS +2C,s*+C7)

.(12)

The choice of other parameters is deter-
mined by the model.
So, for the Kirchhoff model (9) we have

K =1 K, = phi, + p,cthid,
C,=0, C,=Y2, C =770(DK'4 +p2)//c2 :
In the case of the Timoshenko plate (4), (5)

xK°D S pl
kZGh k*Gh’

K =1+

K= (770+F0th%dj; C, =1,

Dizuko-mamemamuyni HayKu
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C, ={{plh[1+ k:GDthrpll (klzoéh +x°
x’D
+p, £1+ kZGhjcth%d}/ZKZ;
C, =7]0|:DK‘4 +p, (1+[2K2H/K2 :
k“Gh

For the inertia of rotation model

o

K =L 1, =(p1x* + ph)m, + p,cthrd ;

C,=0, C,=Y2, C? =770(DK4+p2)/K2.

For the transverse shear strain model (11)

Dx?
K‘2=[l+
C,=0, C,=1/2,

k’Gh’
D«?
CZ=n,| Dx*+p, 1+szh+p2 K,.

The normal component of the tensor is

5, _(mze)‘;_“m;ﬂ

K =1+

Dx?

mj (p1h770 + p,Cthn,d ) )

(13)

where the components u and w of the dis-
placement vector has the form (Grigolyuk and
Selezov, 1973) [5]: for the Kirchhoff model
u= —ZZ—W , and in other cases u = z . Then ex-
X
pression (13), taking into account (12), is re-
duced to the form
_ 2y (A+2G) y
* 47r2i

C]-' ]3 s) ke dxds
i KZCS+2CS+C)

(14)

For an incompressible fluid, the transition
from the space of Laplace images to the space
of originals is carried out according to
(Deutsch, 1956) [13] based on the convolution
theorem. In this case, we have the following ex-
pressions:
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P, (s) 1

s?+C;  C,y

P, (s)

s*+2C,s* +C?

C2-C2>0,

where s?, =C, +,/C2 —CZ .

Let us consider the case when the load in
spatial and temporal coordinates changes ac-
cording to the laws

P, () =5/ (x5 +x°);
P, (t):{t/a, O<t<a; e, t>a}.
Then, for an incompressible fluid, from
(14), taking into account (15), we obtain the ex-

pression of the normal component of the stress
tensor in particular cases (9)-(11)

o M(2+26) Tﬁpl(,c) f(t)

b2 K,

coskXxdx,
0

—Xok

where P, (x)=xe™";

1 sinC.t
f(t)= t———2
® Cia[ c, j

+f,(t); f.(t)=0; t<a,

1 sinC,t
fl(t):_cza(tl_ C“}r
3 3

1 ]
+—————(bsinC,t, —C,cosC.t )+

—bt,

+ 82 - _1—COSZC3tl’ t=t-a>0.
C,(b*+C3) C’

Numerical calculations were performed at
the normal stress o, following parameter val-

ues:  p =910kg/m?  p, =1000 kg/m?;
c, =1400m/s; v=0,33; E =5,88-10°N/m?
d=20m; h=1m; x,=1; a=10"; b=10%;
z=h/2.

Bicnuxk 3anopizbkozo HauionaibHozo yHieepcumeny

- —J. p,(t—7)sinC,zdz,

(15)

t
0, 5C2‘3’2I p, (t—7)(sinCy*z —C}*z cosC;*z ) dr,
0

t
—140,25C,%*(C; —Cj)fﬂz_[ p, (t—7)(s;sins,z —s,sinsz)dr,

0

Comparison of normal stress calculations
o,, 1s performed in cases where the plate is de-

scribed by the Kirchhoff model with and with-
out liquid. It is shown that taking the liquid into
account leads to a significant decrease of the
normal stress in the plate. Accounting for shear
deformation significantly reduces the value o

and in addition, leads to a shift in the maximum
values.

6. On variational formulations without
violation of continuity

In most studies, variational formulations
and asymptotic approaches of the Timoshenko
model using the law of continuity of the me-
dium show the incorrectness of the Timoshenko
model. Therefore, all further arguments and
conclusions about the frequency spectra and the
meaning of the second spectrum remain in
question (Barbashov & Nesterenko, 1983) [15],
(Nesterenko, 1989) [16], (Nesterenko, 1993)
[17], (Chervyakov & Nesterenko, 1993) [18].

An attempt to use the mathematical method
of asymptotic expansions taking into account
the continuity of the medium leads to the incor-
rectness of the Timoshenko equation (Bakh-
valov and Eglit, 2005) [19].

7. Separation of variables in the timoshenko
equation

We also note the fundamental difference
between the Rayleigh equation

o°w o'w
T
. O'w (1o
—< aZW:((T_q_)’

including the Euler-Bernoulli equation, and the
Timoshenko equation
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o*w

ox*

o*w
+ &%, =

O*W s
+

ot? d

o*w

6t26x2

(1 &2 d, 2 +§ d, ](q -q).
A classic method of the variable separation

w(x,t)=W (X)T(t),
does not lead to the separation of variables in
equation (17), in contrast to the complete sepa-
ration of variables in equation (16). In the case
of harmonic oscillations, the method is applica-
ble to (16) and (17).

- 53 a, (17)
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generalized refined equation of 4-dimensional
Eucledian space obtained in this paper as a spe-
cial case. It was considered the conclusions
about the incorrectness and inconsistency of the
Timoshenko model in well-known variation
formulations and asymptotic approaches based
on the law of continuity. A decrease in the in-
fluence of shear deformation in the Timo-
shenko equation was noted upon contact of the
beam-strip with an elastic base and water, as
well as a special case of an elastic base. It was
shown when the violation of continuity at high
frequencies and sharp changes in the beam
thickness the Timoshenko model is not applica-
ble. A decrease of the shear effect in the Timo-
shenko equation was shown from the solution

10.

11.

12.

13.

Dizuko-mamemamuyni HayKu

The violation of continuity in the Timo-
shenko beam equation at short wavelengths has
been shown and discussed. It follows from the

of the problem for a floating elastic plate using
the classical Kirchhoff equation and the refined
Timoshenko equation. It was noted the inap-
plicability of separation of variables in the Ti-
moshenko equation.

8. Conclusion
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