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Key words: Newtonian nudging, For a long time, ground measurements are considered the most accurate method of
nonlinear mathematical regular monitoring of soil moisture. However, ground stations are expensive, require
modelling, Richards equation, local calibration and thus often not practical to use. Other, more affordable means
Earth remote sensing, statistical of soil moisture monitoring can be developed with the recent advancement of Earth
model validation. remote sensing technologies.

In this paper, we describe a nonlinear problem of soil moisture transfer problem with
addition of satellite soil moisture measurements. The mathematical model is based on
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the Richards equation for soil moisture transport, and solved with the finite difference method on implicit iterative scheme.
Satellite moisture retrievals are acquired by combining active and passive sensors data with the decomposition algorithm.

The satellite data are incorporated into the model with the data assimilation algorithm called Newtonian nudging. This
method adds a special ‘nudging’ term into the model governing equation. This assures that the model is corrected by satellite
measurements without affecting the process physics. Moreover, we look into the nudging factor problem, and propose a simple
empirical relation based on the soil properties for more universally stable work of the method.

For validation purpose, we conduct a massive numerical experiments over all registered ground stations in the USA. Evaluation
is done by the use of triple collocation method, which allows assessing the errors of three independent data sources. The data
sources used for evaluation are the model results, ground station measurements and ERAS satellite observations. The results
demonstrate that the presented model is capable of producing results with close accuracy to the ground station measurements.
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YIponoBk OBro 4acy Ha3eMHI BHMIPIOBAHHS BBaXKAJIMCS HAWTOYHIIINM
CIOCOOOM PETYISIPHOTO MOHITOPMHTY BOJIOTOCTI IpyHTY. Ilpore HazemHi
BUMIPIOBAJIBHI CTaHIIi € JOPOTOBAapTICHUMH Ta MOTPeOyIOTh KamiOpyBaHHS
Ha MICI[i BCTAHOBJICHHS, 1[0 YaCTO POOUTH iX BUKOPHUCTAHHS HEAOIUJILHUM Ha
MPAKTHUII. 3 HEIOAaBHIM PO3BUTKOM TEXHOJIOTIN UCTAHIIIHHOTO 30H/1yBaHHS
3emiti MOXXYTh OyTH po3po0JIeHi iHII, O1IBII 1EIIeB] METOMH.

VYV miii poGOTI TpeACTaBICHO HEJiHIMHY 3a/lady BOJOTONEPEHECeHHs i3
JIOfIaBaHHSAM CYIYTHHKOBHX BHMIPIOBaHb BOJIOTOCTI IPyHTY. MaremaTtuuHa
Mozenb OasyeTbCsi Ha pIiBHAHHI Piuapaca ais BOJOTONEpEHECEHHS Ta
PO3B’SI3Yy€THCS METOIOM CKIHUGHHHX PIi3HMIL 3 BHKOPUCTAHHSIM HESBHOI
iTepaniitHoi cxemu Camapcpkoro. CymyTHHKOBI OIIHKH BOJIOTOCTI IPYHTY
OTpHMaHi i3 MO€THAHHS JAHUX aKTHBHUX Ta MACUBHUX CEHCOPIB 32 JOIIOMOT'0I0
ANTOPUTMIB JEKOMIIO3HIII].

CyImyTHHKOBI JJaH1 BKIIFOYATUCS JIO MOJEII 3TiTHO 3 aNTOPUTMOM aCUMUIALIT
JaHNX, [0 HA3MBA€ThCS HBIOTOHIBCHKUM IIAIITOBXYBaHHAM. lleil meroxn
nependadae J01aBaHHS 0COOIMBOTO YICHY «ITiAMITOBXYBAHHSD 10 MOJCIHEHOTO
piBHSHHA. TakuM YHHOM, MOJCIb KOPHUTYETHCS 3TiTHO CYIyTHHUKOBHX
BUMIPIOBaHb Ta 3a0€3MeUy€eThCcs JOTpUMaHHS (i3uku mnporecy. Kpim Toro,
Oyno 3xilicHeHO OIS MpoOIeMH 13 BHOOPOM (haKkTOpy MiIIITOBXYyBAHHS Ta
3aIPONIOHOBAHA eMIIipuYHa (OpMysIa 3 BUKOPHCTAHHSAM IapaMeTpiB IPYHTY,
1110 JTO3BOJISIE MTIABUIIUTH YHIBEPCAIBHICTD Ta CTIMKICTh METOLY.

3 wMeroro Bamijamii Mojeni Oyno 3MiHCHEHO MAaCIITa0HWNA YUCIIOBHMA
CKCTIEPUMEHT 3 BUKOPHUCTAHHSIM YCIX 3apCeCTPOBAHMX HA3eMHHUX CTAHIIH
BuMipioBaHHs Bojorocti B CIIIA. Ouinky Oys0 341 iCHEHO METOOM ITOTPiHHOT
KOJUTOKAIIi{, 110 Ja€ MOXKJIMBICTh OIIIHUTH TMOXHOKH Y TPhOX HE3aJeKHUX
Habopax naHux. s omiHKM OylO0 BHKOPHUCTaHO Taki JpKepena IaHUX:
MOZEIBHI Pe3yNbTaTH, 1aHi BUMIPIOBaHh HA3€MHUX CTAHINH Ta CYMyTHHKOBI
criocTepeskeHHs i3 6a3u mannx ERAS. OtpumMani pe3ynsraTi AeMOHCTPYIOTh,
II0 TIPE/ICTaBICHA MOAETH 3/1aTHA MOKA3yBaTH PE3YJbTATH i3 TOYHICTIO, IO

HAOIMIKAETBCS 10 TOYHOCTI HA3EMHHUX BUMIPIOBAHb.

Introduction. Soil moisture data can be valuable
in numerous practical applications, from agriculture to
climate forecasts. Up-to-date information on moisture
can improve the precision of predictions, optimize
water resource management and advice on irrigation
planning. These applications demand frequent and
precise data which may be provided by measurements
or model simulations. However, soil moisture is a
notoriously difficult parameter to measure [1], and
the accuracy of collected data, especially if they
are derived from a model simulation, is not easily
evaluated. This is particularly true for practical cases,
where data is limited due to economical reasons. For
that reason, our study aims not only to provide soil
moisture predictions, but also to evaluate the model
results, as well as other data that may be available in a
practical case, against the available historical datasets.

In-situ observations are usually considered the
most reliable soil moisture measurements. To provide
immediate observation data at different soil depth,
ground stations use multiple measurement methods,
such as oven-drying, neutron probe, capacitance method
etc. However, they are not used systematically due to
their cost, installation difficulties and other practical
reasons. It has also been pointed out that in-situ data,
measured at a single observation point, may fail to
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describe the state of the whole system, so the installation
point should be considered carefully [2].

Another way to measure soil moisture is by satellite
imagery. Recently, the method became popular in
real-world applications due to its increasing quality
and availability, and it is considered relatively cheap.
Satellite microwave sensors are able to measure soil
moisture in different spatial scales. The accuracy of
these observations is satisfactory for global scale,
but derivation of precise local data requires complex
image processing algorithms. Moreover, microwave
sensors measure only surface soil moisture (0-5 cm
layer), and provide data on a few days interval, which
cannot accurately represent the state of the system.

Land models are another alternative to assess soil
moisture. Model simulations provide continuous data
of all system states, and are cheap to perform. On the
other hand, they unavoidably contain errors due to
generalizations of physics since every participating
process and effect cannot be accounted for. Moreover,
the more complex and full the model is, the more
parameters it requires, which, on their own turn,
demand additional data. Therefore, modern soil
moisture models are often combined with other data
sources and measurements to estimate the parameters
accurately. For example, studies [3; 4] propose
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formulas for calculating model coefficients with the
use of satellite moisture data.

In a case where multiple methods are available,
and each of them has its own strengths and
weaknesses, combination of differently acquired
data might provide substantial improvements. For
example, addition of satellite data into a simulation
model is lately becoming a widely used tool, called
data assimilation. It adapts model to the observed
data, and allows to achieve higher precision level
than provided by each data source alone [5]. There
are multiple data assimilation algorithms available,
the most widely used of which are described in [6]. In
our study, we implement a method called Newtonian
relaxation or nudging.

Newtonian nudging is a rather simple and effective
data assimilation method, first used for oceanography
problems. It is also widely used in hydrology
problems, and has been implemented into a number
of hydrological and environmental models, such as
GLEAM [7] and CATHY [8]. The method consists in
adding a nudging term, multiplied by the difference
between model prediction and observed value, into
the governing equation. The term works as a physical
force that relaxes the result towards observations.

In this study, we describe our model and data
assimilation approach, and also perform a statistical
verification test. Traditionally, the results are validated
against in-situ measurements, which are taken as a
benchmark for comparison. However, among the
variety of statistical methods designed to evaluate
prediction accuracy, we chose the triple collocation
method as it does not imply knowing the absolute truth.
The method involves comparison of three independent
data sources, where each is assumed to contain errors
of some sort. Therefore, the method is effective for
real-world validation tests, and is often employed in
evaluation of soil moisture models [9; 10].

Mathematical problem setting. Our model
includes moisture transfer problem based on the
Richards equation. The problem domain is one-
dimensional of thickness |, with downward X axis and
X=0 at the soil surface. The boundary value problem
setting is as follows:

2002 (k) 2] - 20 s ), (1)

[—k(h)%Jrk(h)J =QU-E ()50, @)
%x:o 0,650, 3)
h(x,0)=hy(x), x [0;/]. 4

Here 6 is absolute soil moisture, h — pressure
head, k — soil hydraulic conductivity, S(h, X, t) — root
water uptake, Q(t) — precipitation rate, E(t) — soil
evaporation rate, h(X) is initial condition for pressure
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head. Potential evaporation E, is derived from
meteorological parameters [5], root water uptake S is
calculated according to potential evapotranspiration
and water availability based on the Feddes model [12].

Since the Richards equation requires a translation
rule between moisture and pressure head values, we
chose a widely used Mualem—van Genuchten model
[13]. The model is represented by the following
equations:

0(h)=0,,;, + —m—min_ y=]_—, (5)

where 6 .. 0 are residual and saturation water
content, K — saturated soil hydraulic conductivity, S —
saturation degree, a, N, | — empirical model parameters.
These parameters define water retention curve of the
soil. The reliable values of Mualem—van Genuchten
model parameters for basic soil types can be found in
the various researches on the topic, as well as estimated
by the program systems like Rosetta [14].
Substituting (5) into (1), the governing model
equation is rewritten in pressure heads and becomes

oh 0 oh oh
B0 G == (kWD |-y -S(hxr). (D)
where  values of coefficients  B(k4)=2a0/0h,
v(h)=0k(h)/oh can be calculated analytically
according to equations (5), (6).

The one-dimensional problem described above
is then discretized using an implicit time scheme
and solved on a uniform grid. Specifically, the
homogeneous finite difference scheme is used for
numerical calculations, since it is rather cheap
computationally and allows variable coefficients in
equations. To deal with nonlinearity of Mualem—van
Genuchten relations, we use an implicit iterative
scheme described by Samarskiy. The scheme
requires doing additional solving iterations on each
time step, recalculating parameters until the solution
converges. This scheme is not optimal in the sense of
computational time, but is simple to implement and
has good convergence [15].

Newtonian nudging assimilation. Newtonian
nudging is a smoother algorithm that modifies the
simulation result on each time based on the past and
future observations. Its original application was for
determining best initial conditions in oceanography
and meteorology problems, but later was adapted for
updating current model state in hydrology problems,
including soil moisture [16].

Despite being not as popular as the filtering
methods, e.g. ensemble Kalman filters [17],
Newtonian nudging is one of the prominent
4-dimensional data assimilation (4DDA) methods.
It is incorporated directly into the model governing
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equation, which makes it better suited for use in
boundary-value problems [18]. Unlike the filtering
methods that treat the solution as a random variable,
nudging introduces a physical force into the equation,
yielding smooth and physically sensible results. The
nudging term, inserted into the Richard equation (1),
has the following form:
0 o

e (kS km]-smxn 0w (x0s0n -0 (8)

where 0, is observed surface soil moisture, G —
nudging factor, W(X, t) — weight function, and &(X) is
the degree of trust to the observations, limited by the
interval of [0; 1].

The core of the term is the difference between
observed and simulated soil moisture. In a more
general case, the term can include a few observations,
past and future, at the same time. The nudging factor
represents the magnitude of the nudging force. It is
recommended by the authors that this force should
correspond to the slowest process in the model. The
weight function corrects the force of nudging based
on the distance from observation point and time span
between the simulation and observation time [19].

Original formulation of Newtonian nudging uses
constant nudging factor. However, while testing the
method, we found out the constant factor causes
irregular behavior, as the nudging seems stronger on
lower moisture values and weaker near saturation
values. This can be attributed to the fact that
coefficients of the model equation (7) are nonlinear
and can vary in the order of magnitude.

Some studies suggest choosing nudging coefficient
from optimality conditions [20] or by solvingan adjoint
problem [21]. While these methods are well-justified
and proved to be accurate, they introduce a significant
computational overhead from solving the additional
problem. Here we suggest a completely different
approach to tackle the nudging factor problem. The
idea is to calculate the suitable factor value using the
current model equation coefficients. In our numerical
experiments, we employed the following adaptive
relation to calculate the factor considering the current
soil retention and permeability characteristics:

G =100 [B(h) |+ 0.5 klgh)]. )

s

Here, as above, h is pressure head, k and kS are
saturated and actual soil hydraulic conductivity, and
B is defined as B(h) = 06/oh according to (5).

Though this ‘adaptive nudging’ relies on unverified
relations and cannot offer the optimal accuracy, it can
be calibrated further to provide stable and accurate
results, and it does not add any computation difficulty
to the problem since the values of coefficients f(h) and
k(h) are already calculated during the solving process.

Satellite moisture retrieving. Data assimilation
procedure requires low-noise and frequent satellite
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data. Active instruments on Sentinel-1, RADARSAT,
RISAT-1 etc. can provide high-resolution soil
moisture data with appropriate algorithms; however,
as a rule, they have a sparse repeated interval around
10 days worldwide. On the other hand, passive
instruments on SMAP, SMOS, AMSR-E and AMSR2
can provide data with repeated intervals of a couple
of days worldwide, although without disaggregation
algorithms these instruments provide low resolution
of about tens of kilometers [22].

A disaggregation method is applied to obtain
high-resolution soil moisture data from passive
sensors AMSR-E, AMSR2 and SMAP, land surface
temperature from AMSR2 and AMSR-E data. To
calculate dielectric permittivity of the soil, we applied
Single Channel Algorithm — Vertical [23] for SMAP
disaggregated data and Land Parameter Retrieval
Model for AMSR-E and AMSR2 data. The method
allows us to get high-resolution dielectric permittivity
maps with 250x250 m resolution, which is close to the
field scale. We applied the Mironov model for L-band
[24], Dobson model [25] for C-band to convert
dielectric permittivity to soil moisture content.

Model evaluation methods. We apply the triple
collocation method to combine and assess the errors
of ground station measurements, satellite observations
and model simulations. The method considers at least
three data sets, represented here by random variables
0, 0, and 0,, each containing the same number of
estimations of some variable. It is also required that the
datasets are unbiased, which cannot be guaranteed in
practice, so the bias is removed artificially. Each of the
variables 0,, 6, and 6, differs from the hypothetical truth
0 by aresidual r, i =1,n, as shown by the equations

6, =6+r,
0,=0+r7, (10)
0, =0+r,.

The method does not allow to find the truth
value 6, only to evaluate the quality of each dataset
through the estimation of the random errors r. After
eliminating the hypothetical truth from the equations
(10) and taking average over the resulting equation,
we can estimate the variances of residuals, denoted
o,, G,, 0, respectively, with the following formula:

612 = <(91 _ez)(el _63)>’
0’% = <(91 _62)(62 - 93)>, (11)
‘5§ = <(91 _63)(92 _63)>’

where (s) denotes covariance operator. Hence, using
the random error variance, we can estimate the
residuals as

(r7) = (077) — (0705) (0705)/(050% ),
() =(07) - </e’ )(0:05)/(6;0%), (12)
(r7) = (07) - (0101)(0404)/(0105) ,

where prime sign means anomaly, for example

6, =6, -

—-(6,) [10].

ISSN 2413-6549



30

Though in this work we use the triple collocation
analysis only to verify and compare the accuracy
of datasets, its application in fact is much more
wider. The supposed variance of given datasets can
be employed for further calibration. For example,
authors of [26] propose using the variances provided
by triple collocation analysis as weights to merge
active and passive sensor retrieved values.

The model results are also evaluated against the
measurements using the following traditional metrics:
average absolute deviation (AAD), root mean square
deviation (RMSD), bias, Pearson correlation (R) and
the index of agreement (IoA), defined as follows:

DA obs 2
OO g
z’ ( 0 (1) — 0| + o () - 0 )

In the equation above 6 (¢) are model simulated
moisture values on time points t, 6°”(r) are soil
moisture measurements, and 6°* is their mean value
over the simulation period.

All of the metrics mentioned above are calculated
using the Pytesmo library, developed specifically for
evaluation of soil moisture observations [27].

Numerical experiments. To achieve statistically
relevant accuracy evaluation, we conducted a large-
scale numerical experiment using the open ground
sensor data provided by the International Soil
Moisture Network (ISMN) [28]. The database includes
information from hundreds of in-situ soil moisture
sensors over the world, that is intended to be used as
validation data for various modelling problems.

We chose ERA5 Climate Reanalysis data as a
third dataset for triple collocation analysis. It contains
spatial data of various meteorological and climate
variables at 0.25° spatial resolution, including
satellite-derived soil moisture on four soil layers [29].
Here, we use only the satellite topsoil moisture data
for comparison.

The weather data were acquired from the NOAA
database as for the nearest meteorological station.
The NOAA provides one of the most full open
meteorological datasets; however, the format of data
is not easy to read. We downloaded the weather data
from Lametsy API service [30], which provides the
same NOAA data with daily aggregation and in a
more readable format. Soil parameters were assumed
based on the soil type individually for each station,
based on the data provided by SoilGrids [31]. Initial
conditions were set according to the satellite moisture
data used for data assimilation.

The experiment was conducted for 2018 over
all 659 ground stations in the USA, registered in
the ISMN database. Out of them, 14 stations were
excluded due to the issues with data availability,
and another 83 stations — because of inconsistent or
scarce measurement data, severe model errors etc.

loA =1-

+
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Therefore, the summary presented below includes
experiment results for the remaining 562 stations.

Note also that comparison has been done only for
the soil surface moisture since some ground stations
provided no belowground data, and satellites sense
moisture at the top soil layer only.

Results and discussion. First, we perform a
traditional comparison of model simulation results
against ground station measurements. The averaged
metrics over all stations are presented in Table 1.
Analysis shows that absolute deviation and RMSD
values are rather high, and must be caused chiefly
by the lack of correlation. Moreover, the deviation
can be attributed to incorrect initial conditions or
soil parameters. These are two of the key model
parameters, but the chosen values were rough due
to the great number of stations in the experiment.
Nevertheless, the bias between the datasets is very
low, meaning their average values are the same,
and only the deviations from the mean might not be
represented correctly by the model.

The average correlation demonstrated by the
datasets is 26%, which is a rather weak correlation.
However, the index of agreement is about 50%, which
implies a tolerably good convergence.

Further analysis of the latter two characteristics
is shown on Fig. 1. The first frequency histogram
indicates that many simulations demonstrated
negative correlation with ground station data. This
may be primary due to imprecise weather data, e.g.
when the meteorological station is very remote,
and its data differ from actual situation on the site.
Another reason may be the groundwater, which can
cause a significant influence and is not yet accounted
for in the model. Most of the positive correlation
values are near the 0.3-0.4 interval, which is medium
correlation. The index of agreement demonstrates
a normal-like frequency distribution, clustered
around the 50% value. It indicates that the datasets
demonstrate a stable agreement with each other, even
if correlation is weak.

Table 1
Evaluation of the model results against ground
station measurements
RMSD Bias R IoA
0.11830 | 0.01782 | 0.26080 | 0.48001

AAD
0.100001

Metrics

Values

Resuming the discussion of nudging factor issue, we
cannow compare the verification results for both nudging
methods. It should be pointed out that bias seems to be
the chief indicator of the problem with constant factor.
Original calculations with constant factor resulted in
the bias value of 0.06554, whereas adapted formulation
reduced it to 0.01782, which is approximately 3.5 times
less. RMSD is lowered accordingly, whereas other
metrics are only slightly improved.
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We also provide here likewise comparison of
model results with ERAS surface satellite data.
As an evaluation benchmark, ERAS5 data have an
advantage of being consistent and harmonized with
each other, whereas ISMN in-situ measurements are
provided by various types of sensors, having different
measurement methods and limitations. At the same
time, ERAS5 data represent satellite measurements,
but are not used in data assimilation process,
therefore they can serve as another benchmark for
model predictions. The average key metrics of model
evaluation against the independent satellite data are
presented in Table 2

Surprisingly, we acquired less convergence between
the model and satellite data than between the model and
in-situ measurements. Average deviation and RMSD
are nearly 50% higher in this case, but this must be due
to the significant bias between the data. In fact, while
revising the ERAS5 soil moisture dataset, we found that
the values presented there are significantly higher than
in the other datasets, especially our satellite-retrieved

Pearson correlation

» Q}
X ,\9 .bs: ;
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moisture. However, ERAS5 database is aimed for
climatic and meteorological analysis, so the difference
might be caused by the different speciality of the
datasets. While analyzing the data further with triple
collocation method, we obviously remove the bias, so
this should no longer present a problem.

Table 2
Evaluation of the model results against
ERAS satellite measurements

AAD RMSD Bias R
0.14119 | 0.16052 | 0.12023 | 0.35014

TIoA
0.46031

Metrics
Values

As for the correlation, the model and ERAS
satellite data agree by 35%, which is significantly
better than in the previous case. Fig. 2 presents the
frequency histograms of Pearson correlation and
index of agreement results. Index of agreement chart
is very similar to that on the Fig. 1, and its average
value (46%) is also nearly the same. As for the
correlation, its values are distributed rather evenly

Index of agreement
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Fig. 1. Frequency histogram of the correlation (left) and index of agreement (right) between
the model and the ground station data
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Fig. 2. Frequency histogram of the correlation (left) and index of agreement (right) between
the model and ERAS satellite data
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on the histogram. Nevertheless, low and negative
correlation values are less frequent than in the
previous case.

The triple collocation analysis yielded an average
0.05258, 0.04290 and 0.07473 variances for ground
station measurements, satellite observations and
model simulations, respectively. These results suggest
that ERAS satellite data are the most accurate of the
three, and ground sensor observations only slightly
behind. The model appears to be the least accurate of
the estimations, yet its error is comparable with that
of in-situ measurements.

The most peculiar result of this triple collocation
analysis might be the variance of the satellite
observations. The lowest variance value implies
that satellite data must be the most accurate of all
considered data sources. However, it seems very likely
that our satellite soil moisture data and those provided
by the ERAS, though calculated independently and
by different algorithms, might be derived from the
same satellite images. If that is the case, then the three
datasets used for analysis are not truly independent, as
is required by the triple collocation methods. Recent
research shows, that thought actual independence
of data sources cannot be guaranteed, it does not
influence the results significantly [32]. To avoid
making unfounded inferences, we leave out the results
of triple collocation analysis for satellite retrievals
and further discuss only the interdependence between
model results and in-situ measurements.

Fig. 3 demonstrates the relation between the
variances of ground station and model data. The dots
represent the variance pairs, and the thin black line
represents the equality y = X. Most of the pairs are
above the line, meaning model estimations are mostly
less credible than in-situ measurements. However, the
points are mostly clustered near the equality line, and
29% of the model variances are better than that of the
measurements. We consider it a favorable result, since
it proves that in a sufficient number of cases model
estimations are as accurate as the ground sensors.

Conclusion. The chief purpose of our article and
the presented experiment was to compare the model
performance with the ground sensor measurements,
and to determine whether the satellite model can be
a reliable alternative for the ground station. Thought
direct comparison of the model predictions against
the benchmarks suggested rather low accuracy of the

former, triple collocation analysis showed that overall
accuracy of the model was not far from the ground
sensors. Nearly 30% of model results were estimated to
have even better accuracy than in-situ measurements.

As suggested by our results, the mathematical
model still faces a number of problems, such as
determining model parameters, taking into account
all essential physical processes, finding reliable
weather and assimilation data etc. However, it still
has advantages over the traditional measurements
methods as it does not require installing additional
sensors, and can predict moisture even in belowground
layers. The results are less accurate then that acquired
by the direct measurements, but still the model
accuracy is comparable to measured results.

In addition, the model has a vast potential
for improvement. Boundary conditions may be
considering groundwater level, soil parameters on
different soil depths and factors such as soil hysteresis
and temperature driven water flow may be taken into
account. Assimilation methods and satellite accuracy
are likewise improving, which is hopefully indicating
the high potential of current research.
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