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For a long time, ground measurements are considered the most accurate method of 
regular monitoring of soil moisture. However, ground stations are expensive, require 
local calibration and thus often not practical to use. Other, more affordable means 
of soil moisture monitoring can be developed with the recent advancement of Earth 
remote sensing technologies.
In this paper, we describe a nonlinear problem of soil moisture transfer problem with 
addition of satellite soil moisture measurements. The mathematical model is based on 
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the Richards equation for soil moisture transport, and solved with the finite difference method on implicit iterative scheme. 
Satellite moisture retrievals are acquired by combining active and passive sensors data with the decomposition algorithm. 
The satellite data are incorporated into the model with the data assimilation algorithm called Newtonian nudging. This 
method adds a special ‘nudging’ term into the model governing equation. This assures that the model is corrected by satellite 
measurements without affecting the process physics. Moreover, we look into the nudging factor problem, and propose a simple 
empirical relation based on the soil properties for more universally stable work of the method.
For validation purpose, we conduct a massive numerical experiments over all registered ground stations in the USA. Evaluation 
is done by the use of triple collocation method, which allows assessing the errors of three independent data sources. The data 
sources used for evaluation are the model results, ground station measurements and ERA5 satellite observations. The results 
demonstrate that the presented model is capable of producing results with close accuracy to the ground station measurements. 
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Упродовж довго часу наземні вимірювання вважалися найточнішим 
способом регулярного моніторингу вологості ґрунту. Проте наземні 
вимірювальні станції є дороговартісними та потребують калібрування 
на місці встановлення, що часто робить їх використання недоцільним на 
практиці. З нещодавнім розвитком технологій дистанційного зондування 
Землі можуть бути розроблені інші, більш дешеві методи.
У цій роботі представлено нелінійну задачу вологоперенесення із 
додаванням супутникових вимірювань вологості ґрунту. Математична 
модель базується на рівнянні Річардса для вологоперенесення та 
розв’язується методом скінченних різниць з використанням неявної 
ітераційної схеми Самарського. Супутникові оцінки вологості ґрунту 
отримані із поєднання даних активних та пасивних сенсорів за допомогою 
алгоритмів декомпозиції.
Супутникові дані включалися до моделі згідно з алгоритмом асиміляції 
даних, що називається ньютонівським підштовхуванням. Цей метод 
передбачає додавання особливого члену «підштовхування» до модельного 
рівняння. Таким чином, модель коригується згідно супутникових 
вимірювань та забезпечується дотримання фізики процесу. Крім того, 
було здійснено огляд проблеми із вибором фактору підштовхування та 
запропонована емпірична формула з використанням параметрів ґрунту, 
що дозволяє підвищити універсальність та стійкість методу.
З метою валідації моделі було здійснено масштабний числовий 
експеримент з використанням усіх зареєстрованих наземних станцій 
вимірювання вологості в США. Оцінку було здійснено методом потрійної 
коллокації, що дає можливість оцінити похибки у трьох незалежних 
наборах даних. Для оцінки було використано такі джерела даних: 
модельні результати, дані вимірювань наземних станцій та супутникові 
спостереження із бази даних ERA5. Отримані результати демонструють, 
що представлена модель здатна показувати результати із точністю, що 
наближається до точності наземних вимірювань.

Ключові слова: ньютонівське 
підштовхування, нелінійне 
математичне моделювання, 
рівняння Річардса, 
дистанційне зондування Землі, 
статистична валідація. 

Introduction. Soil moisture data can be valuable 
in numerous practical applications, from agriculture to 
climate forecasts. Up-to-date information on moisture 
can improve the precision of predictions, optimize 
water resource management and advice on irrigation 
planning. These applications demand frequent and 
precise data which may be provided by measurements 
or model simulations. However, soil moisture is a 
notoriously difficult parameter to measure [1], and 
the accuracy of collected data, especially if they 
are derived from a model simulation, is not easily 
evaluated. This is particularly true for practical cases, 
where data is limited due to economical reasons. For 
that reason, our study aims not only to provide soil 
moisture predictions, but also to evaluate the model 
results, as well as other data that may be available in a 
practical case, against the available historical datasets.

In-situ observations are usually considered the 
most reliable soil moisture measurements. To provide 
immediate observation data at different soil depth, 
ground stations use multiple measurement methods, 
such as oven-drying, neutron probe, capacitance method 
etc. However, they are not used systematically due to 
their cost, installation difficulties and other practical 
reasons. It has also been pointed out that in-situ data, 
measured at a single observation point, may fail to 

describe the state of the whole system, so the installation 
point should be considered carefully [2].

Another way to measure soil moisture is by satellite 
imagery. Recently, the method became popular in 
real-world applications due to its increasing quality 
and availability, and it is considered relatively cheap. 
Satellite microwave sensors are able to measure soil 
moisture in different spatial scales. The accuracy of 
these observations is satisfactory for global scale, 
but derivation of precise local data requires complex 
image processing algorithms. Moreover, microwave 
sensors measure only surface soil moisture (0-5 cm 
layer), and provide data on a few days interval, which 
cannot accurately represent the state of the system.

Land models are another alternative to assess soil 
moisture. Model simulations provide continuous data 
of all system states, and are cheap to perform. On the 
other hand, they unavoidably contain errors due to 
generalizations of physics since every participating 
process and effect cannot be accounted for. Moreover, 
the more complex and full the model is, the more 
parameters it requires, which, on their own turn, 
demand additional data. Therefore, modern soil 
moisture models are often combined with other data 
sources and measurements to estimate the parameters 
accurately. For example, studies [3; 4] propose 
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formulas for calculating model coefficients with the 
use of satellite moisture data.

In a case where multiple methods are available, 
and each of them has its own strengths and 
weaknesses, combination of differently acquired 
data might provide substantial improvements. For 
example, addition of satellite data into a simulation 
model is lately becoming a widely used tool, called 
data assimilation. It adapts model to the observed 
data, and allows to achieve higher precision level 
than provided by each data source alone [5]. There 
are multiple data assimilation algorithms available, 
the most widely used of which are described in [6]. In 
our study, we implement a method called Newtonian 
relaxation or nudging.

Newtonian nudging is a rather simple and effective 
data assimilation method, first used for oceanography 
problems. It is also widely used in hydrology 
problems, and has been implemented into a number 
of hydrological and environmental models, such as 
GLEAM [7] and CATHY [8]. The method consists in 
adding a nudging term, multiplied by the difference 
between model prediction and observed value, into 
the governing equation. The term works as a physical 
force that relaxes the result towards observations.

In this study, we describe our model and data 
assimilation approach, and also perform a statistical 
verification test. Traditionally, the results are validated 
against in-situ measurements, which are taken as a 
benchmark for comparison. However, among the 
variety of statistical methods designed to evaluate 
prediction accuracy, we chose the triple collocation 
method as it does not imply knowing the absolute truth. 
The method involves comparison of three independent 
data sources, where each is assumed to contain errors 
of some sort. Therefore, the method is effective for 
real-world validation tests, and is often employed in 
evaluation of soil moisture models [9; 10].

Mathematical problem setting. Our model 
includes moisture transfer problem based on the 
Richards equation. The problem domain is one-
dimensional of thickness l, with downward x axis and 
x=0 at the soil surface. The boundary value problem 
setting is as follows:
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Here θ is absolute soil moisture, h – pressure 
head, k – soil hydraulic conductivity, S(h, x, t) – root 
water uptake, Q(t) – precipitation rate, Es(t) – soil 
evaporation rate, h0(x) is initial condition for pressure 

head. Potential evaporation Es is derived from 
meteorological parameters [5], root water uptake S is 
calculated according to potential evapotranspiration 
and water availability based on the Feddes model [12].

Since the Richards equation requires a translation 
rule between moisture and pressure head values, we 
chose a widely used Mualem–van Genuchten model 
[13]. The model is represented by the following 
equations:
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where θmin, θmax are residual and saturation water 
content, ks – saturated soil hydraulic conductivity, S – 
saturation degree, α, n, l – empirical model parameters. 
These parameters define water retention curve of the 
soil. The reliable values of Mualem–van Genuchten 
model parameters for basic soil types can be found in 
the various researches on the topic, as well as estimated 
by the program systems like Rosetta [14].

Substituting (5) into (1), the governing model 
equation is rewritten in pressure heads and becomes
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where values of coefficients � �h h� � � � � ,  
v h k h h� � � � � � �  can be calculated analytically 
according to equations (5), (6).

The one-dimensional problem described above 
is then discretized using an implicit time scheme 
and solved on a uniform grid. Specifically, the 
homogeneous finite difference scheme is used for 
numerical calculations, since it is rather cheap 
computationally and allows variable coefficients in 
equations. To deal with nonlinearity of Mualem–van 
Genuchten relations, we use an implicit iterative 
scheme described by Samarskiy. The scheme 
requires doing additional solving iterations on each 
time step, recalculating parameters until the solution 
converges. This scheme is not optimal in the sense of 
computational time, but is simple to implement and 
has good convergence [15].

Newtonian nudging assimilation. Newtonian 
nudging is a smoother algorithm that modifies the 
simulation result on each time based on the past and 
future observations. Its original application was for 
determining best initial conditions in oceanography 
and meteorology problems, but later was adapted for 
updating current model state in hydrology problems, 
including soil moisture [16].

Despite being not as popular as the filtering 
methods, e.g. ensemble Kalman filters [17], 
Newtonian nudging is one of the prominent 
4-dimensional data assimilation (4DDA) methods. 
It is incorporated directly into the model governing 
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equation, which makes it better suited for use in 
boundary-value problems [18]. Unlike the filtering 
methods that treat the solution as a random variable, 
nudging introduces a physical force into the equation, 
yielding smooth and physically sensible results. The 
nudging term, inserted into the Richard equation (1), 
has the following form: 
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where θobs is observed surface soil moisture, G – 
nudging factor, W(x, t) – weight function, and ε(x) is 
the degree of trust to the observations, limited by the 
interval of [0; 1]. 

The core of the term is the difference between 
observed and simulated soil moisture. In a more 
general case, the term can include a few observations, 
past and future, at the same time. The nudging factor 
represents the magnitude of the nudging force. It is 
recommended by the authors that this force should 
correspond to the slowest process in the model. The 
weight function corrects the force of nudging based 
on the distance from observation point and time span 
between the simulation and observation time [19].

Original formulation of Newtonian nudging uses 
constant nudging factor. However, while testing the 
method, we found out the constant factor causes 
irregular behavior, as the nudging seems stronger on 
lower moisture values and weaker near saturation 
values. This can be attributed to the fact that 
coefficients of the model equation (7) are nonlinear 
and can vary in the order of magnitude. 

Some studies suggest choosing nudging coefficient 
from optimality conditions [20] or by solving an adjoint 
problem [21]. While these methods are well-justified 
and proved to be accurate, they introduce a significant 
computational overhead from solving the additional 
problem. Here we suggest a completely different 
approach to tackle the nudging factor problem. The 
idea is to calculate the suitable factor value using the 
current model equation coefficients. In our numerical 
experiments, we employed the following adaptive 
relation to calculate the factor considering the current 
soil retention and permeability characteristics: 

G h h
k h
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Here, as above, h is pressure head, k and ks are 
saturated and actual soil hydraulic conductivity, and 
β is defined as � �h h� � � � �  according to (5).

Though this ‘adaptive nudging’ relies on unverified 
relations and cannot offer the optimal accuracy, it can 
be calibrated further to provide stable and accurate 
results, and it does not add any computation difficulty 
to the problem since the values of coefficients β(h) and 
k(h) are already calculated during the solving process.

Satellite moisture retrieving. Data assimilation 
procedure requires low-noise and frequent satellite 

data. Active instruments on Sentinel-1, RADARSAT, 
RISAT-1 etc. can provide high-resolution soil 
moisture data with appropriate algorithms; however, 
as a rule, they have a sparse repeated interval around 
10 days worldwide. On the other hand, passive 
instruments on SMAP, SMOS, AMSR-E and AMSR2 
can provide data with repeated intervals of a couple 
of days worldwide, although without disaggregation 
algorithms these instruments provide low resolution 
of about tens of kilometers [22]. 

A disaggregation method is applied to obtain 
high-resolution soil moisture data from passive 
sensors AMSR-E, AMSR2 and SMAP, land surface 
temperature from AMSR2 and AMSR-E data. To 
calculate dielectric permittivity of the soil, we applied 
Single Channel Algorithm – Vertical [23] for SMAP 
disaggregated data and Land Parameter Retrieval 
Model for AMSR-E and AMSR2 data. The method 
allows us to get high-resolution dielectric permittivity 
maps with 250×250 m resolution, which is close to the 
field scale. We applied the Mironov model for L-band 
[24], Dobson model [25] for C-band to convert 
dielectric permittivity to soil moisture content.

Model evaluation methods. We apply the triple 
collocation method to combine and assess the errors 
of ground station measurements, satellite observations 
and model simulations. The method considers at least 
three data sets, represented here by random variables 
θ1, θ2 and θ3, each containing the same number of 
estimations of some variable. It is also required that the 
datasets are unbiased, which cannot be guaranteed in 
practice, so the bias is removed artificially. Each of the 
variables θ1, θ2 and θ3 differs from the hypothetical truth 
θ by a residual r i ni, ,= 1 , as shown by the equations
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The method does not allow to find the truth 
value θ, only to evaluate the quality of each dataset 
through the estimation of the random errors ri. After 
eliminating the hypothetical truth from the equations 
(10) and taking average over the resulting equation, 
we can estimate the variances of residuals, denoted 
σ1, σ2, σ3 respectively, with the following formula: 
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where •  denotes covariance operator. Hence, using 
the random error variance, we can estimate the 
residuals as
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where prime sign means anomaly, for example 
� � �� � �1 1 1  [10].
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Though in this work we use the triple collocation 
analysis only to verify and compare the accuracy 
of datasets, its application in fact is much more 
wider. The supposed variance of given datasets can 
be employed for further calibration. For example, 
authors of [26] propose using the variances provided 
by triple collocation analysis as weights to merge 
active and passive sensor retrieved values.

The model results are also evaluated against the 
measurements using the following traditional metrics: 
average absolute deviation (AAD), root mean square 
deviation (RMSD), bias, Pearson correlation (R) and 
the index of agreement (IoA), defined as follows: 

IoA
t t

t t

DA obs

t
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In the equation above �DA t� �  are model simulated 
moisture values on time points t, �obs t� �  are soil 
moisture measurements, and θobs  is their mean value 
over the simulation period.

All of the metrics mentioned above are calculated 
using the Pytesmo library, developed specifically for 
evaluation of soil moisture observations [27].

Numerical experiments. To achieve statistically 
relevant accuracy evaluation, we conducted a large-
scale numerical experiment using the open ground 
sensor data provided by the International Soil 
Moisture Network (ISMN) [28]. The database includes 
information from hundreds of in-situ soil moisture 
sensors over the world, that is intended to be used as 
validation data for various modelling problems.

We chose ERA5 Climate Reanalysis data as a 
third dataset for triple collocation analysis. It contains 
spatial data of various meteorological and climate 
variables at 0.25° spatial resolution, including 
satellite-derived soil moisture on four soil layers [29]. 
Here, we use only the satellite topsoil moisture data 
for comparison.

The weather data were acquired from the NOAA 
database as for the nearest meteorological station. 
The NOAA provides one of the most full open 
meteorological datasets; however, the format of data 
is not easy to read. We downloaded the weather data 
from Lametsy API service [30], which provides the 
same NOAA data with daily aggregation and in a 
more readable format. Soil parameters were assumed 
based on the soil type individually for each station, 
based on the data provided by SoilGrids [31]. Initial 
conditions were set according to the satellite moisture 
data used for data assimilation.

The experiment was conducted for 2018 over 
all 659 ground stations in the USA, registered in 
the ISMN database. Out of them, 14 stations were 
excluded due to the issues with data availability, 
and another 83 stations – because of inconsistent or 
scarce measurement data, severe model errors etc. 

Therefore, the summary presented below includes 
experiment results for the remaining 562 stations. 

Note also that comparison has been done only for 
the soil surface moisture since some ground stations 
provided no belowground data, and satellites sense 
moisture at the top soil layer only.

Results and discussion. First, we perform a 
traditional comparison of model simulation results 
against ground station measurements. The averaged 
metrics over all stations are presented in Table 1. 
Analysis shows that absolute deviation and RMSD 
values are rather high, and must be caused chiefly 
by the lack of correlation. Moreover, the deviation 
can be attributed to incorrect initial conditions or 
soil parameters. These are two of the key model 
parameters, but the chosen values were rough due 
to the great number of stations in the experiment. 
Nevertheless, the bias between the datasets is very 
low, meaning their average values are the same, 
and only the deviations from the mean might not be 
represented correctly by the model.

 The average correlation demonstrated by the 
datasets is 26%, which is a rather weak correlation. 
However, the index of agreement is about 50%, which 
implies a tolerably good convergence. 

Further analysis of the latter two characteristics 
is shown on Fig. 1. The first frequency histogram 
indicates that many simulations demonstrated 
negative correlation with ground station data. This 
may be primary due to imprecise weather data, e.g. 
when the meteorological station is very remote, 
and its data differ from actual situation on the site. 
Another reason may be the groundwater, which can 
cause a significant influence and is not yet accounted 
for in the model. Most of the positive correlation 
values are near the 0.3-0.4 interval, which is medium 
correlation. The index of agreement demonstrates 
a normal-like frequency distribution, clustered 
around the 50% value. It indicates that the datasets 
demonstrate a stable agreement with each other, even 
if correlation is weak.

Table 1
Evaluation of the model results against ground  

station measurements
Metrics AAD RMSD Bias R IoA
Values 0.100001 0.11830 0.01782 0.26080 0.48001

Resuming the discussion of nudging factor issue, we 
can now compare the verification results for both nudging 
methods. It should be pointed out that bias seems to be 
the chief indicator of the problem with constant factor. 
Original calculations with constant factor resulted in 
the bias value of 0.06554, whereas adapted formulation 
reduced it to 0.01782, which is approximately 3.5 times 
less. RMSD is lowered accordingly, whereas other 
metrics are only slightly improved. 
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We also provide here likewise comparison of 
model results with ERA5 surface satellite data. 
As an evaluation benchmark, ERA5 data have an 
advantage of being consistent and harmonized with 
each other, whereas ISMN in-situ measurements are 
provided by various types of sensors, having different 
measurement methods and limitations. At the same 
time, ERA5 data represent satellite measurements, 
but are not used in data assimilation process, 
therefore they can serve as another benchmark for 
model predictions. The average key metrics of model 
evaluation against the independent satellite data are 
presented in Table 2. 

Surprisingly, we acquired less convergence between 
the model and satellite data than between the model and 
in-situ measurements. Average deviation and RMSD 
are nearly 50% higher in this case, but this must be due 
to the significant bias between the data. In fact, while 
revising the ERA5 soil moisture dataset, we found that 
the values presented there are significantly higher than 
in the other datasets, especially our satellite-retrieved 

moisture. However, ERA5 database is aimed for 
climatic and meteorological analysis, so the difference 
might be caused by the different speciality of the 
datasets. While analyzing the data further with triple 
collocation method, we obviously remove the bias, so 
this should no longer present a problem. 

Table 2
Evaluation of the model results against  

ERA5 satellite measurements
Metrics AAD RMSD Bias R IoA
Values 0.14119 0.16052 0.12023 0.35014 0.46031

As for the correlation, the model and ERA5 
satellite data agree by 35%, which is significantly 
better than in the previous case. Fig. 2 presents the 
frequency histograms of Pearson correlation and 
index of agreement results. Index of agreement chart 
is very similar to that on the Fig. 1, and its average 
value (46%) is also nearly the same. As for the 
correlation, its values are distributed rather evenly 

Fig. 1. Frequency histogram of the correlation (left) and index of agreement (right) between  
the model and the ground station data

Fig. 2. Frequency histogram of the correlation (left) and index of agreement (right) between  
the model and ERA5 satellite data
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on the histogram. Nevertheless, low and negative 
correlation values are less frequent than in the 
previous case.

The triple collocation analysis yielded an average 
0.05258, 0.04290 and 0.07473 variances for ground 
station measurements, satellite observations and 
model simulations, respectively. These results suggest 
that ERA5 satellite data are the most accurate of the 
three, and ground sensor observations only slightly 
behind. The model appears to be the least accurate of 
the estimations, yet its error is comparable with that 
of in-situ measurements.

The most peculiar result of this triple collocation 
analysis might be the variance of the satellite 
observations. The lowest variance value implies 
that satellite data must be the most accurate of all 
considered data sources. However, it seems very likely 
that our satellite soil moisture data and those provided 
by the ERA5, though calculated independently and 
by different algorithms, might be derived from the 
same satellite images. If that is the case, then the three 
datasets used for analysis are not truly independent, as 
is required by the triple collocation methods. Recent 
research shows, that thought actual independence 
of data sources cannot be guaranteed, it does not 
influence the results significantly [32]. To avoid 
making unfounded inferences, we leave out the results 
of triple collocation analysis for satellite retrievals 
and further discuss only the interdependence between 
model results and in-situ measurements.

Fig. 3 demonstrates the relation between the 
variances of ground station and model data. The dots 
represent the variance pairs, and the thin black line 
represents the equality y = x. Most of the pairs are 
above the line, meaning model estimations are mostly 
less credible than in-situ measurements. However, the 
points are mostly clustered near the equality line, and 
29% of the model variances are better than that of the 
measurements. We consider it a favorable result, since 
it proves that in a sufficient number of cases model 
estimations are as accurate as the ground sensors.

Conclusion. The chief purpose of our article and 
the presented experiment was to compare the model 
performance with the ground sensor measurements, 
and to determine whether the satellite model can be 
a reliable alternative for the ground station. Thought 
direct comparison of the model predictions against 
the benchmarks suggested rather low accuracy of the 

former, triple collocation analysis showed that overall 
accuracy of the model was not far from the ground 
sensors. Nearly 30% of model results were estimated to 
have even better accuracy than in-situ measurements.

As suggested by our results, the mathematical 
model still faces a number of problems, such as 
determining model parameters, taking into account 
all essential physical processes, finding reliable 
weather and assimilation data etc. However, it still 
has advantages over the traditional measurements 
methods as it does not require installing additional 
sensors, and can predict moisture even in belowground 
layers. The results are less accurate then that acquired 
by the direct measurements, but still the model 
accuracy is comparable to measured results. 

In addition, the model has a vast potential 
for improvement. Boundary conditions may be 
considering groundwater level, soil parameters on 
different soil depths and factors such as soil hysteresis 
and temperature driven water flow may be taken into 
account. Assimilation methods and satellite accuracy 
are likewise improving, which is hopefully indicating 
the high potential of current research.
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