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With rapid development of technologies and growing number of application of
neural networks, the problem of optimization arises. Among other methods to
optimize training and inference time, neural network pruning has attracted attention
in recent years. The main goal of pruning is to reduce the computational complexity
of neural network models while retaining performance metrics on desired level.
Among the various approaches to pruning, Single-shot Network Pruning (SNIP)
methods was designed as a straightforward and effective approach to optimize
number of parameters before training. However, as neural network architectures
have evolved, particularly with the growing popularity of transformers, a need
to reevaluate traditional pruning methods arises. This paper aims to revisit SNIP
pruning method, evaluate its performance on transformer model, and introduce
an enhanced version of SNIP, specifically designed for transformer architectures.
The paper outlines the mathematical framework of SNIP algorithm, and
proposes a modification, based on specifics of transformers models. Transformer
models achieved impressive results because of their attention mechanisms for
a multitude of tasks such as language modeling, translation, computer vision
tasks and many others. The proposed modification takes into account this unique
feature and combines this information with traditional loss gradients. Traditional
method calculates importance score for weights of the network using only
gradients from loss function, in the case of enhanced algorithm. In the enhanced
version, the importance score is a composite metric that incorporates not only
the gradient from the loss function but also from the attention activations.

To evaluate the efficiency of proposed modifications, a series of experiments
were conducted on image classification task, using Linformer variation of
transformer architectures. The results of experiments demonstrate the efficiency
of incorporating attention scores in pruning. Conducted experiments show that
model pruned by modified algorithm outperforms model pruned by original
SNIP by 34% in validation accuracy, confirming the validity of the improvements
introduced.
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Knrwouoei cnoesa: transformers, 31 cTpiMKMM pPO3BUTKOM TEXHOJOTIH 1 3pOCTaHHSAM 4YHMCIA TPUKIAIHUX
HeUpOHHI Mepedici, NPYHiHe, 3aCTOCYBaHb HEHPOHHUX Mepesx ocTae mpodiiema ix ontumizaii. Cepen iHImX
eghexmugnicmo, ONMUMIZ3AYIA. METO/IiB ONTUMI3allii HABYaHHS Ta BUKOPUCTAHHS HAaBYCHUX MOJIENIEH B OCTaHHI

poku Oarato yBaru Oylio MPHIIIEHO METOAaM BHUKIIOYEHHs BariB (IPYHIiHT)
HelpoHHOI Mepexi. OCHOBHA MeTa MPYHIHTY — 3MEHIIUTH OOYUCIIOBAIIBHY
CKJIQIHICTh MOJICTEH 3a YMOBH 30€pEKCHHS TOKA3HUKIB INPOTYKTHBHOCTI
Ha npuiHATHOMY piBHI. Cepel Pi3HOMAHITHUX MiAXOMIB IO HPYHIHTY, Oyno
po3pobiIeHo MeTo ofHOpa3oBoro npyHiHry (SNIP), mio siBnsie co0oro npocTuii
1 epekTMBHUN MiAXiA A oNTHMIi3anii mapaMeTpiB mepea HaBdaHHAM. OgHAK
3 TIOSIBOIO HOBHX apXIiTEKTyp HEHPOHHUX MEpPEeX, OCOOIMBO 31 3pOCTaHHIM
MOMYJISIPHOCTI apXiTeKTyp Tuiy transformer, BUHHMKae morpeda MeperisHyTH
iJIXi7 10 METOIB pyHiHTY. /laHa cTaTTsa Mae Ha MeTi nepermsHyTH MeTtox SNIP,
OLIIHUTH HOTo e(heKTUBHICTH Ha MOAENI transformer Ta mpeCTaBUTH MOKpAILCHY
Bepcito SNIP, crieriansHO 1onpaiboBaHy It apXiTekTyp tranformer.

VY crarTi BUKIaIeHO MareMaTiHyHy ocHOBY anroputmy SNIP Ta 3anpornoHoBaHo
fioro Moaudikaliro, BUXOAM4M 31 crenudiku Moxene transformer. Mopeni
apxiTekTypu transformer AOCAINIM 3HAYHUX PE3YIBTATiB 3aBISKH CBOEMY
MEXaHi3My yBaru Jiisi 0araTbox 3aBJaHb, TAKUX K PO3pOOKa MOBHUX MOJIEINEH,
NepeKaj, 3a7adi KOMIT IOTEPHOTO 30py Ta Oarato iHIIMX. 3alporoHOBaHA
Moz (iKaIlist BpaXoBye IO YHIKAJIBHY OCOONUBICTS 1 OEAHYE 1110 iH(OpMAIiito
npu oOuMCIIeHHI TpadieHTy 1 QyHKIii BTpat. TpaanumiiHuit MeToa po3paxoBye
OLIIHKY Ba)XJIMBOCTI I Bar MEPEXki, BUKOPUCTOBYIOUH JIUIIIE TPAieHTH (PYHKIIi
BTpar. Y po3MIMpeHiil Bepcii OIiHKAa BaXKIMBOCTI € CKJIAJICHUM IOKA3HUKOM,
SKUIl BKJTIOUAE HE JINIIE TPATI€HT (yHKII BTpATH, aje i akTUBALIIO yBary.
Jus oniHKM e(eKTUBHOCTI 3alponoHOBaHOT Moudikalii Oyno MmpoBeneHO
Cepilo eKCIEPUMEHTIB Ha 3aBAaHi kiacu(ikarii 300paxeHb, BHKOPUCTOBYIOUH
Bapiamito apxitektypu transformer — Linformer. Pe3ynbratu excriepumMeHTiB
JEMOHCTPYIOTh ¢(PEKTUBHICTh BpaxXyBaHHS IOKa3HHUKIB yBaru IpH MPYHIHTY.
IIpoBeneni eKkCmepUMEHTH TOKa3ylOTh, IO MOJENIb, ONTHMi30BaHAa 3a
MOJM(IKOBAaHUM aJITOPUTMOM, Ma€ MOKa3HUK TOYHOCTI Ha 34% Kpamui, HiXK
MOJIellb, ONTHUMI30BaHa 3a OpuriHambHUM MetonoM SNIP, migTBepmxyroun
JIOCTOBIPHICTh BHECECHHUX BJIOCKOHAJICHb.
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Introduction

Recent developments in the field of deep learning
have revolutionized the use of technologies in many
fields. Among other developments, introduction of
transformer models, initially designed for natural lan-
guage processing (NLP) tasks, made possible achiev-
ing state-of-the-art performance in other domains.
Transformers have been successfully in machine
translation [1], text summarization [2], and ques-
tion-answering systems [3].

Beyond NLP, the versatility of transformer models
has been demonstrated in other fields. With introduction
of Vision Transformer (ViT), training neural network
with this architecture allowed to improve efficiency in
computer vision tasks such as image classification [4].
Transformers have also been applied in bioinformatics
for protein folding prediction [5] and in reinforcement
learning for optimizing control systems [6].

Despite their effectiveness, transformer models
come with high computational and memory require-
ments, even compared to more traditional architec-
tures. The self-attention mechanism usually comes
at a quadratic cost, and many transformer archi-
tectures have high-dimensional embeddings and
have many stacked layers. This makes training and
deploying transformers challenging, particularly in
resource-constrained environments like edge devices
or embedded systems. While not specifically designed
for transformers, pruning techniques aim to reduce
the complexity of neural network architectures in
general, making them more efficient and deployable
without significantly compromising performance.

Existing Pruning Methods

In the field of neural network optimization, vari-
ous pruning methodologies have been developed to
address computational complexity and reduce mem-
ory requirements [7; 8].

Among weight pruning methods, magnitude-based
pruning operates by selecting weights for elimination
based on their absolute values. While straightforward,
this technique may induce performance degradation,
so resulting model requires fine-tuning. In contrast,
gradient-based pruning leverages the gradients of
the loss function to identify importance of weights
for elimination, but at a computational cost that may
extend convergence time [9].

Neuronal pruning approaches, such as activa-
tion-based and objective-based methods, offer another
dimension to pruning [10]. Activation-based pruning
eliminates neurons that exhibit consistently low activa-
tion values across a dataset and enhances model inter-
pretability. However, the method risks neglecting neu-
rons that are conditionally crucial [11]. Objective-based
pruning focuses on detecting neurons that contribute
less than others to the overall loss function and pruning
them. This approach is computationally demanding and
requires carefull hyperparameter tuning.
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Structured pruning methods, including filter and
block pruning, offer a more architectural focus [12].
Filter pruning removes entire filters in convolutional
layers based on criteria like their L1-norm. Despite
its effectiveness in reducing both parameter count and
computational complexity, it may necessitate architec-
tural adjustments [13]. Block pruning prunes contigu-
ous blocks of weights or neurons, preserving the archi-
tecture but potentially removing salient features [14].

Foresight pruning methods such as SNIP and the
Lottery Ticket Hypothesis introduce unique para-
digms [15; 16]. SNIP calculates a saliency score for
each weight based on its initial contribution to the
loss function and prunes the least salient ones before
training commences. However, this method may
require dataset-specific adjustments. Recent work has
emphasized the utility of SNIP for pre-training, mark-
ing it as a notable avenue for computational optimiza-
tion in neural networks.

Purpose and objectives of the study

Despite the advancements in pruning meth-
ods, there is room for improvement, especially in
the context of transformer models. This study aims
to enhance the efficiency of transformer models by
modifying the SNIP algorithm to incorporate atten-
tion scores into the weight scoring mechanism. Our
contributions are as follows:

— Anovel modification to the SNIP algorithm that
integrates attention scores.

— An empirical evaluation of the modified algo-
rithm's performance on Plant Disease Dataset.

— A comparative analysis with original pruning
method to demonstrate the efficacy of our approach.

Methodology

The SNIP algorithm is designed to prune neural
networks before training commences. It calculates a
saliency score for each weight in the network, based
on the impact of removing that weight on the loss func-
tion. Weights with lower scores are pruned, resulting in
a sparse network that can be trained more efficiently.

Mathematical Framework

The goal of SNIP is to find a sparse subset of
weights W, where W, c W such that the loss L(W,)
is minimized. Here, W represents the weights in the
entire neural network, and L(W) is the loss function
that the network aims to minimize during training.
Main steps of the algorithm are:

1. The neural network is initialized with a set of
random weights, denoted as W.

2. A single forward and backward pass is per-
formed on a mini-batch of the training data. This step
is crucial for computing the gradients % of the loss
function with respect to each weight in W.

3. The importance s, of each weight w, in W is
calculated using the formula:

=W x— 1
s =lw x| (M

1
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Where j‘f is the gradient of the loss function with

respect to the weight w, .
1. The calculated importance scores s, are
normalized to produce § using the equation:
S,

Y #)

J
2. The normalized importance scores § are sorted
in ascending order. A fraction p of the weights with
the lowest normalized importance scores are pruned
from W, resulting in the pruned set W) :

W, ={w eW:4 2 o) 3)

6. The pruned network, now represented by W , is
trained using standard optimization algorithms.

Modified SNIP Algorithm with Attention Scores

Proposed modification to the SNIP algorithm involves
the integration of attention scores generated by the trans-
former model. Its vital to focus on the attention in trans-
former optimization because the attention mechanism as
a pivotal component of the Transformer architecture that
has revolutionized the field of deep learning, particularly
in natural language processing tasks. At its core, attention
allows models to focus on different parts of the input data
with varying degrees of emphasis, akin to how humans
pay attention to specific details when comprehending
mformation. The attention scores, which indicate the
importance of different parts of the input sequence, are
used to adjust the importance scores of the weights.

The proposed enhanced Single-shot Network
Pruning (SNIP) algorithm incorporates a crucial
modification: incorporating attention outputs into cri-
teria evaluated for gradient calculation. The new cri-
teria includes loss function, attention activations and
output vector, and calculated using formula 3.

L’:L(W)+ZA,.+O 4)

In the new formula for criteria, 4; denotes sum of
the outputs for j-th attention layer, and O denotes sum
of the output tensor. Thus, the augmented importance
score becomes:

oL’
S; :l w; X

| 5)

The backward pass for the modified criteria
increases gradient values depending on the sensitiv-
ity of each individual weight in the attention layers.
Given the importance of attention mechanisms in
transformer models, this knowledge is vital for effec-
tive pruning.

The rationale for the effectiveness of this approach
lies in the specialized function of attention mecha-
nisms in transformer architectures, which are critical
for tasks such as language modeling and translation.
By incorporating gradients from attention activations,
the pruning strategy becomes more informed, possi-
bly preserving essential features in the pruned model.
The modified SNIP algorithm aims to offer a nuanced
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pruning methodology better suited to the complexi-
ties of transformer models.

Experimental Setup

The experiments were conducted on Plant Dis-
ease Dataset — Housing tens of thousands of images,
the dataset offers a panoramic view of diverse plant
species (fig. 1). Labels include disease description,
allowing to train a classification model to discern
between healthy and diseased plants.

Fig. 1. Sample batch of Plant Disease Dataset

The transformer block within ViT model is replaced
by a Linformer architecture to achieve computational
efficiency without sacrificing performance (fig. 2).

Linear

Scaled dot product
Altention

T T
Projection Projection
i i H
Linear Linear Linear
I I I
v Q K

Fig. 2. Architecture diagram of Linformer model

It is engineered to efficiently handle long
sequences by reducing the time complexity of the
self-attention mechanism from O(n?) to O(n) where
n is the sequence length [17]. This is accomplished
using following approaches:

— Fixed-Length Context: The self-attention
mechanism in Linformer is designed to focus only on
a fixed context window, thereby making the compu-
tational complexity invariant to the sequence length.

— Linear Self-Attention: Linformer approximates
the full attention matrix by low-rank matrices, effec-
tively reducing the time complexity to linear. This
is particularly beneficial for tasks that involve long
sequences.

— Kernelized Attention: The architecture employs
kernelized attention patterns, which further optimize
the computational requirements by eliminating the
need for pairwise attention weight calculations.

— Shared Projections: Linformer utilizes shared
projections for the key and value matrices in the
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self-attention mechanism, thereby reducing the num-
ber of parameters and computational load.

In the Linformer model, the linearized attention
for each head i is computed as head, = P-(EVW/).
Here, P is the attention probability matrix, which is
derived from the softmax normalization of the scaled
dot-product term QWQ(E% The matrices ow?,
EkwX, and Fvw) represent the projections of the
queries, keys, and values, respectively, for the i-th
attention head (fig. 3).

Kv)

WH W)

0 G kxd
Ik

n=dm

Fig. 3. Calculating projection layers of keys (K)
and values (V) matricies

The learned context projection matrices E, and
F, enable this low-rank approximation, effectively
reducing the time complexity to O(n) (eq. 5).

head, = Attention(QW 2, E KW, FVYW,")

0 KA\T
_ ftm[MJ FwY 5)
\/Z kxd

Pinxk
The Linformer architecture in our experiment
is configured with a sequence length of 50, which
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includes 49 patches and one class token. The model
dimension is set to 128, and it comprises 12 layers
(depth) with 8 attention heads. The kernel size for the
attention mechanism is set to 64.

The Linformer block is integrated into a Vision Trans-
former model tailored for image classification tasks. The
input images are resized to 224x224 pixels and are divided
into patches of size 32x32. These patches are then linearly
embedded into a 128-dimensional space, the same as the
Linformer dimension. The input image channels are set to
3, corresponding to the RGB color space.

Results

The model was trained for 50 epochs and its per-
formance was evaluated against the baseline SNIP
algorithm. As shown in Table N, the modified method
achieved a training accuracy of 98.9% and a valida-
tion accuracy of 94.9%, compared to the baseline's
67.9% and 57.9%, respectively. This translates to an
improvement of 37% in validation accuracy. Addi-
tionally, the modified method also showed signifi-
cantly lower loss values, with a training loss of 0.03
and a validation loss of 0.18, as opposed to the base-
line's 1.01 and 1.22, respectively (table 1).

Table 1
Training results
Method Train Train Val. Val.
accuracy | loss | accuracy | loss
SNIP 67.9 1.01 57.9 1.22
Modified SNIP 98.9 0.03 94.9 0.18

The improvements were achieved on a very sparse
model with only 275,738 trainable parameters, which
constitutes just 10% of the initial parameters. The
training curves, displayed in Figure 4, further sub-
stantiate the effectiveness of modified algorithm.

Validation
/—”—_
[
rd
/
!
0 5 10 15 20 25 30 35 40 45 50 — Mod. SNIP
= SHNIP

0O 5 10 15 20 25 30 35 40 45 50
epoch

Fig. 4. Accuracy and F1 score comparison for original and modified algorithm
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Conclusions

This study proposes a modification to the Sparse
Networks from Scratch (SNIP) pruning algorithm by
incorporating attention scores generated by the trans-
former model. Specifically, the hypothesis is that
the by performing additional backward passes from
attention activations and concatenating the gradients
from original method, a more nuanced importance

27

score can be calculated to increase accuracy of result-
ing model while pruning the same amount of weights.

The results confirm that integrating attention
scores into the SNIP algorithm not only improves the
model's accuracy by 34% on validation subset, main-
taining a sparse parameter set. This opens up new
avenues for research in model pruning, particularly in
the context of transformer architectures.
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