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An approach to numerical modeling of the stress-strain state of composite
structures with discrete inclusions is presented in the paper. The finite element
method is used as the main method, namely its modification — the moment
finite-element scheme. The moment scheme, in contrast to the classic scheme
of finite elements, allows to avoid such negative properties as not taking in
consideration the rigid rotation of the finite element and “false” shear. If both
the material of the matrix and the material of the reinforcing inclusions are
weakly compressible, then problems arise due to the fact that some elastic
constants approach very large values. The Taylor series expansion of the
components of the displacement vector, the components of the strain tensor,
and the volume change function is used in order to eliminate the mentioned
shortcomings, after that, according to the moment scheme, certain sums are
removed from these expansions.

Homogenization of the material with lamellar inclusions, a small proportion
of spherical inclusions, and a large proportion of spherical inclusions is used
for modeling the elastic properties of the composite. The chaotic nature of
the location of inclusions after homogenization makes it possible to present
a non-homogeneous composite material as a homogeneous quasi-isotropic
one. The described approaches are used in the construction of the stiffness
matrix of the spatial hexagonal finite element. The obtained expressions for
the stiffness matrix are done in the software package for calculating structures
from composite materials. The calculation of a thick-walled pipe under the
action of internal pressure from a composite material with lamellar inclusions,
a small proportion of spherical inclusions, and a large proportion of spherical
inclusions was carried out using the software package. For different volume
fractions of discrete inclusions, the numerical convergence of the results with
different finite element meshes has been investigated, which shows great
congruence with analytical solutions.
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Y po6oTi mpeacTaBleHo MiAXiA [0 YUCEIBLHOTO MOJICNIIOBAHHS HAMpPYXKEHO-
Je(OpPMOBAHOrO CTaHy KOHCTPYKIIH i3 KOMIO3MLIMHUX MarepiaiiB i3
JUCKPETHUMM BKJIIOUCHHSIMH. SIK OCHOBHMH METOJ] BHKOPHCTAaHO METOX
CKIHUCHHHX €JIEMEHTIB, a came Horo MoauQikamilo — MOMEHTHY CXEMY
CKIHUEHHOTO eJIeMEeHTY. MOMEHTHA cxeMa, Ha BiIMiHY BiJl KJIACUYHOI CXEeMHU
CKIHUEHHHUX €JIEMEHTIB, J03BOJIsIE yHUKHYTH TAKUX HETAaTUBHUX BIACTUBOCTEIA,
SIK HEBpaXyBaHHS KOPCTKOTO IOBOPOTY CKIHYEHHOTO €JIEMEHTY Ta «XHMOHOTO»
3cyBy. Y pasi, SIKIIO ¥ Marepial MaTpulli, i MaTepiajg apMyrO4YMX BKJIIOUCHb
€ CIaOKOCTUCIUBUMH, TO BUHUKAIOTh MPOOIEMH, OB SI3aHi 3 TUM, IO AEsKi
IPYXKHI CTaJI NPSIMYIOTh 10 AY>K€ BEJIMKUX 3HAUCHb. [{/1 yCYHEHHS BKa3aHUX
HEJIOMIKIB BUKOPUCTOBYETHCSI PO3KJIAaJaHHS B psa Teilopa KOMIIOHEHTIB
BEKTOpY MepeMillleHb, KOMIOHEHTIB TeH30py Aedopmartiil Ta GyHKUil 3MiHU
00’eMy Ticis 4Oro 3rifIH0O MOMEHTHIM CXeMi MEBHI JOJAHKU BHIYYaIOThCS
3 IUX pO3KIagaHb. Il MOAETIOBAHHS MPYXHUX BJIACTUBOCTEH KOMIIO3HUTY
BUKOPUCTAHO T'OMOTEHi3allil0 Marepiany i3 INIAaCTUHYaTUMH BKIIIOUCHHSMH,
MaJIOl0 YacTKOI C(EpUYHUX BKIIOYECHb, BEIHKOI YACTKOIO chepudHux
BKJIIOUCHb. Xa0TUYHUH XapaKTep pO3TalllyBaHHs Ta Opi€HTALlii BKIIIOUCHb MMiCIs
TOMOTEHi3allii Ja€ MOXKJIUBICTb NPEACTABUTH HEOJHOPITHNUN KOMIIO3UIIHHUIH
Marepian OJHOPIAHUM KBa3ii3oTponHuM. OnucaHi MiaXoau BUKOPUCTAHO MPH
no0yn0Bi MaTpHUIll KOPCTKOCTI MPOCTOPOBOTO IMIECTUIPAHHOTO CKIHYEHHOT'O
esnleMeHTy. OTpUMaHi CHiBBIAHOLIEHHS JUIS MaTPHIli KOPCTKOCTI peai3oBaHi
y MpOrpaMHOMY HaKeTi Uil PO3PaxyHKy KOHCTPYKLIM 13 KOMIO3HIIHHX
MarepianiB. 3a JIOMOMOIOK IMPOrPaMHOTO IAKETy IMPOBEICHO PO3PaxyHOK
TOBCTOCTIHHOI TpyOM Mif MAi€l0 BHYTPILIIHBOTO TUCKY 3 KOMIIO3HLIHHOIO
Marepiany 3 MJIACTHHYATUMU BKJIFOUEHHSMH, MAJIOI0 YacTKOK chepudHux
BKJIFOUCHB, BEJIMKOIO YaCTKOIO c(hepUIHUX BKIIOUYEHB. {1 pi3HHX 00 €MHHUX
YAaCTOK JUCKPETHUX BKJIIOUEHB JOCIIIKEHO YHCEIbHY 301KHICTh PE3YJIbTaTIB
IOpU PI3HUX CITKaX PO30OUTTS HA CKIHUCHHI €JIEMEHTH, sIKa IOKa3ye rapHe
CHIBIA/IHHS 3 aHATITUYHUMH PO3B’I3KAMH.
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Introduction. The progress of technologies for
the production of structural materials leads to the
appearance of new grades of materials, the mechan-
ical properties of which are significantly different
from the existing ones. The use of these materials
in the manufacture of structures requires a descrip-
tion of their properties for design calculations. One
of the common composite materials is a composite
material reinforced with discrete inclusions of vari-
ous shapes — spherical, ellipsoidal, needle-shaped,
disk-shaped, and others. One of the calculations car-
ried out is the strength calculation of the structure.
Material heterogeneity due to the presence of discrete
inclusions requires consideration of the geometry and
properties of each discrete inclusion in the material
when creating mathematical models. The creation of
accurate mathematical models suitable for engineer-
ing calculations is possible only in the presence of
a small number of inclusions, and for real materials,
when the number of inclusions is significant, such
models will be cumbersome and unsuitable for use.
Another way of modeling is the homogenization of
the material, and its representation as an imaginary
homogeneous material with mechanical constants
that are called effective. This approach allows avoid-
ing the mathematical description of each inclusion
in the material and making the mathematical model
much simpler.

Both the complex geometry of the structure and
the variety of processes occurring in the structure sig-
nificantly limit the use of analytical methods when
calculating the strength, hence numerical methods
are used to solve the problem. The most common
and universal method is the finite element method
(FEM). But the traditional scheme of the finite ele-
ment method has a number of negative properties that
significantly slow down the convergence of solutions.
Therefore, solving this problem leads to the emer-
gence of various modifications of the method, which
allow improving the accuracy of calculations. One
of the effective modifications of the method is the
moment finite-element scheme (MFES), developed
for different groups of materials — isotropic, fibrous
composites, weakly compressible, etc. This modifica-
tion allows to avoid such imperfections of the tradi-
tional scheme as not taking into account the displace-
ments of the finite element as a rigid whole and the
“false” shear effect.

In the process of using the MFES, we will calcu-
late the matrix of elastic constants using the effective
elastic constants of the granular composite and will
use an approach that takes into account the weak
compressibility of the material, which will allow us
to calculate both compressible and weakly compress-
ible materials.

The application of the finite element method to
the study of deformation processes of composites is
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given in a lot of studies. At the same time, such stud-
ies are carried out both at the micro and macro levels,
as well as when modeling the interrelationship of the
behavior of the composite material at the specified
levels.

Literature review. In work [1], a computational
procedure for modeling the microstructure of ran-
domly reinforced composites with cylindrical or
spherical-cylindrical inclusions is proposed. The pro-
posed methodology combines the random sequential
adsorption (RSA) algorithm for the preliminary mod-
eling of the random location of inclusions with the
subsequent application of the finite element method
for the study of a representative volume of the com-
posite material with inclusions, that have various
characteristics of homogeneity and isotropy.

Modeling of the physical and mechanical prop-
erties of a polymer composite material using the
spatial finite element method was carried out in [2].
ANSYS analysis software system was used to numer-
ically determine the strength of materials randomly
strengthened by spherical and cylindrical inclusions.
A comparison was made with the results of full-scale
tests.

Article [3] is devoted to the prediction of elas-
tic and plastic constants composite material from
polytetrafluoroethylene reinforced with aluminum.
For this purpose, two types of 2D representative vol-
umetric elements were developed and investigated
based on the statistical analysis of microstructure
images, taking into account the geometry and distri-
bution of reinforcing particles and microvoids. The
same microstructure is modeled and investigated in
a three-dimensional setting using the finite element
method. The obtained results indicate the effective-
ness of the mentioned approaches.

The multilevel use of the finite element method
at both the micro and macro levels is used in works
[4; 5]. The accuracy and effectiveness of using FE? in
models of the behavior of composite material under
plastic deformation conditions based on the theory of
small deformations were studied, and for the studied
environment, decomposition by subdomains was used,
each of which is related to the model of the compos-
ite material at the micro level [4]. The task of design-
ing composite structures using the FE? finite element
method based on two-level simultaneous optimization,
which reduces the level of stress concentration and
improves the stiffness properties of the composite with
elliptical inclusions, was solved in [5].

The method of finite elements with its software
implementations in CAD is also used directly for the
calculation of structures from composite materials
with mathematical models embedded in CAD. Thus,
in work [6], ANSYS software based on the finite ele-
ment method was used to estimate the deformations
and stresses of a leaf spring made of composite mate-
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rial. Various combinations of composite materials,
namely E-glass-epoxy, carbon-epoxy, boron-epoxy,
and graphite-epoxy, were analyzed to select the opti-
mal spring design.

In work [7], the finite element method was used
to analyze composites in a wide variety of situa-
tions, namely, the behavior of materials was modeled
depending on the theory, the type of material anisot-
ropy, the law of failure criteria, etc. The finite element
method was used for research at different levels of
modeling — micro-, meso— and macro-levels. Differ-
ent types of finite elements (plate, shell, and others)
were used for modeling.

On the basis of the Abaqus software package and
its extension using the Python programming code,
examples of the calculation of composite materials
for various problem statements are given, namely in
the conditions of elasticity, viscoelasticity, the pres-
ence of damage, delamination, fatigue, strength stud-
ies, edge effects, etc. [8].

The moment finite-element scheme for the calcu-
lation of structures made of fibrous composite mate-
rials is presented in [9], where the spatial character of
fiber reinforcement is taken into account.

Methods. In this work, we construct a stiffness
matrix of a spatial finite element based on a moment
scheme for calculating structures made of compos-
ite material reinforced with discrete inclusions. We
also take into account the possibility of calculating
composite materials with weakly compressible com-
ponents.

Considering that the main goal is to study the
spatial problems of the mechanics of composites, we
build the stiffness matrix of the three-dimensional
finite element. According to the geometric shape, spa-
tial elements can be parallelepiped, triangular prisms
and tetrahedrons, each of these elements has its own
advantages and disadvantages. From the point of
view of the symmetry of the approximating functions
along the coordinate directions, among the proposed
finite elements, the hexagonal element is generally
more effective. Characteristic points are inherent in
each element — the nodes of the finite element (as a
rule, the corner points of the element), which reflect
the discrete character of the obtained model.

The stiffness matrix of the composite material
with discrete inclusions using the MFES for the
weakly compressible material is constructed. One of
the most common geometric forms of a finite element
is a parallelepiped, for which the same number of
nodes along all coordinate directions is natural and,
accordingly, there is symmetry in the approximating
functions along the coordinates.

We get a discrete representation of the geometric
area in the form of a collection of hexagonal finite
elements, but their shape and size usually differ
depending on one or another grid generator in case
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of applying the finite element method. It is unsuit-
able to perform mathematical operations and trans-
formations for all types of forms when deriving the
main ratios of the stiffness matrix. A more rational/
reasonable way is when a local coordinate system is
introduced for each finite element, in which its shape
and dimensions are displayed in a cube with a fixed
side length (Fig. 1). Then, with the help of mathemat-
ical operators of transformation from one coordinate
system to another, these relations are obtained in the
global coordinate system, which describes the geom-
etry of the structure and the boundary conditions. For
the convenience of numerical integration according
to Gauss quadrature formulas, let the length of the
side of the cube be equal to 2. Let us number the eight
nodes of the finite element as shown in fig. 1, we
place the origin of the local coordinate system in the
center of the cube.

5001 | ¥

6(101)

0~ 0
2(100) 4(110)

Fig. 1. Mapping of a curvilinear parallelepiped
finite element for a granular composite
into a cubic one

Variational principles are one of the most well-
founded laws describing natural phenomena. To
model the process of deformation of structures made
of granular composites, we will use the variational
principle of Lagrange. To do this, we need to deter-
mine the potential energy of the object under consid-
eration. In the case of elastic deformation, this value
can be written as follows:

m=w -4, e

where W'— the energy of elastic deformation of the body,
A" —the work of external forces acting on the body.

According to Lagrange's variational principle, the

potential energy /7" variation is considered, which

after discretization of the object is equal to the sum of
the corresponding values for all finite elements:

8 = 26 W - gaA}"), )

here n — the number of finite elements.

This variational equation serves to form the system
of solving equations of the finite element method. This
procedure does not differ from the similar procedure in
the traditional scheme of the finite element method, so
let us focus on the obtaining of stiffness matrices of the
finite element using the moment scheme. Let us write
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down the variation of the energy of elastic deformation
W of an arbitrary i-th finite element by volume
of V (redesignating W' for simplification by W ):

sW = [[[ o"5e,dV,

and using the inverse form of generalized Hooke's
law, we get

W = .”.J. C™e,,de,dV,
v

in the matrix form, the last relation, taking into account
the parity of the tangential stresses, will take the form

oW = st [*Jestar,

T
where {gkl} = {811’ €225 €335 €125 €13, 823} — vector of
deformations, | C* | — matrix of elastic constants of
the material of the object.

As a result of homogenization of heterogeneous
materials, we obtain a homogeneous material with
effective mechanical characteristics. The material
obtained after homogenization, depending on a num-
ber of initial parameters, such as the shape and loca-
tion in space of reinforcing elements, properties of
the matrix and fiber, can be classified as anisotropic
(general case), orthotropic, transtropic materials, and,
finally, as a quasi-isotropic material. The last case is
characteristic of a granular composite material, that
is, a quasi-isotropic material. A significant manifes-
tation of anisotropic properties for such materials is
not a frequent case — it is possible when, for example,
reinforcing particles have a deterministically asym-
metric shape and certain orientations when located in
a composite.

Let us use the relation for the elastic constants of
an isotropic (quasi-isotropic) material through the
Lamé parameters 4, u and the components of the met-
ric tensor §:

Cijkl — “(gikgjl + gilgjk)+ kgy'gkl

Considering that the effective elastic constants of
a composite material are determined by the bulk mod-
ulus of elasticity K and the shear modulus G:

W=Gr=K- %G
we will have
SW = j j j [ZGg”‘g”Sk, + (K - %Gj Gg”jﬁs[jdV,
or

sw =[] [2Ggikgﬂgk188ij +(K—§G)686jdV,

where 6 is the volume change function.
And expression (3) will take the form:

ow = [18{ey) 268" g {exs}av - [[st0 (k- 26)wjav. ()
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Thus, in fact, two independent elastic constants
are needed to describe the elastic properties. Let us
consider some approaches to their definition.

The following ratios can be used to determine
effective elastic constant composite materials with
discrete inclusions. For a composite material with
a small volume fraction of spherical inclusions, we
have the effective shear modulus [10]:

15(1-&)[1-%],*

G=G|1- = &)
7-5v+2(4-5V) o
effective bulk modulus
. (K=K
Kk« (6)
1+74
(Kt‘FgG*j

here G°, G — are the shear modules of the material
of the matrix and inclusion, respectively; K, K~ —
volume modules of matrix and inclusion material,
respectively; v — Poisson's ratio of matrix material;
f —the volume fraction of inclusions in the composite
material.

For a composite material with a large volume
fraction of spherical inclusions (f — 1) we have the
effective shear modulus [10]:

Gj( . . G”j
1= [ 7-5v" +2(4-5v") 2 (1= f)
G=G 1—[ G - G ., (D
15(1-v")
effective bulk modulus
_x (K -K)f
e (K-%) ®)
1+(1—f)*74*
(K +§G]

For a composite material with a small volume
fraction of lamellar inclusions, we have the effective
shear modulus [10]:

. (6-6)r G(9K +8G)
E () N (ST )
"G+ a)
effective bulk modulus

Kok s KK (10)

(K" -K)

1+74

(K*+fG°j

3

An important procedure in the finite element
method is the choice of the type of approximating
functions, and how accurately the problem will be
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solved in the future depends on it. If the finite element
is assumed to be isoparametric in the form of a paral-
lelepiped with eight nodes (Fig. 1), then it is reason-
able to choose a linear approximation in each of the
three coordinate directions. In this case, according to
the moment finite-element scheme for weakly com-
pressible materials, three components characterizing
the deformed state of the material are decomposed by
local power functions of the form

p q r
W([qu) — (xl) ("XZ‘) ('x3) , (11)
plg'r!
here p=0,...,5,¢g=0,....mr=0,....n — degrees

of approximating functions in the corresponding
coordinate directions; in the adopted law of
approximation /=m=n=1.

Then we will have for the components of the
displacement vector:

p=0g=0r=0

(12)

for the components of the strain tensor
Ly M; Ny

ZZZeypqr pqr)

p=0g=0r=0

(13)

and volume change functions
[-1m-1n-1

e: épqr\qur,

p=0g=0r=0

(14)

where o), el#"), &%) are the expansion coefficients
of the components of the displacement vector, the
deformation vector, and the volume change function,
respectively.

In the vector-matrix form of the record, expres-
sions (15) and (16) will take the form:

e = vy {o) (15)
e} = {wit e} (16)
{0} = {wa} &) (17)

where

000 100 010 110 001 101 011 111
(0} = {2 i, G2, 19, o0, o, i, 1) —

the vector of displacement expansion coefficients,
{w,} = {‘V } {15055, X, X5, X5, X3, X, 5, X3} —
the vector of power functions of the form (13),

_ {(000) _(100) _(010) _(10) _(001) _(lo1) _(o11) _(i11)] _
{e,.j}—{e,]. sei ™ el el e el%) e e,j}

the vector of expansion coefficients of the volume
change function,

{a} _ {a(ooo)’é(loo),g(om)’g(lm),g(om),g(lol)’&(on)’&(m)} _
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the vector of expansion coefficients of the volume
change function.
Substituting relations (18), (19) into (4), we obtain:

oW = [[fs{e) V' 2Gg" 8" {w, e, aV +

+j!ja{e} [K—ng{e}dV,

To determine the components /", we will use
the Cauchy relations that relate displacement to
deformations:

1|0z, 0Z,,
g =— U, + U, ;|
b 20ox, " oax, MY

1

(18)

(19)

Differentiating (15), we have:

(100)

_ (110)
Uy = O

(010)
+ O

(101)

(001)
+ O

v CUN co(k',“)\u(o“)

(010)

U = o (110) _ (100) (011 (001) w(lll)w(lm)

Top Ty o Y &

(001)

101 100
Uy s = 62 4 {100y ()

+ oMy (011) (010) (111)

+ oMy 4 Iy 1), (20)
Then relations (19) will take the form:

07, 100 110). (010 101).(001) 111 011
gy = ((DSC L A VAR P G N )
0x,
o= %(mg{lo) 1 D0 4 G010 11Dy 00 )
0x,
0z, 00 01). (100 o1 (010) 0
£y = ((1)5c Dy (1)5(1, Dy 100 4 “)Sc'“)\v( 1 11 (1 )

0x;

1( oz, 00 0)_ (010 0
€ =~ k (w(kl ) 4 0)5(1.1 )\I’( 10) 0353-01)\11( 0 | (A)(kIv”)\II(O”)) +
2\ ox,

+ az,, (605310) " wgllo)\v(mo) i 0)([(911)\‘](001) 4 (D(klvll)\V(IOI))J;

0x,
1( oz, 00 0), (010 o1), (00 0
8, = 2[5 k (wg. ) 1 M IONO10) | OO0 4 (11 ¢ 11>)+
3
" (Z: (waom) " Co5{1})1)\”(100) " ws{qn)w(mo) + mSj.”)\u(”"))J;
1

O T O Y e Y

+(D(km 110)] (21)

Then the coefficients of the deformation vector e,g.”"’)
in expression (16) can be determined by the formula:

_1[6Zkv( (010) (110)_ (100) (011). (001) +m(klvll)w(101))+

6Zk (0)5(001) 4 co5(1})1)“/(100) i 0)5(0}1)\”(010)
0x,

pHqHr
(rar) _ e, |

’ (ox,) (x,)" (ox, )

As a result, we will have the following ratios for
the expansion coefficients e/ :

(par) u+1vn
e Z(D p+l ng—vr— n)’

pvn

par

e(pqr) _ Z(D(uvﬂn) k'

22 k' (p-ng+1-vr- n)
uvn

pqr
(par) _ (wvn+l) £k .
e33 Z(’Ok' ﬁp—pq—vr+1—n)’

pvn

(22)

X=X =x3=0
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(par) _ 1 & (hv+In) ek’
ey = EZ(‘Dk' (p—n+lg—vrn)

v

(u+lvn) £k' .
+ O (p—ng-v+lr—n) ) >

par

(rar) _ 1 (wvn+1) £k (w+lvn) £k’ .
s - 5 Z ((Dk' (p-n+lg—vr-nm) + Wy (p—quvrfnﬂ)) ’

v

r 1 & v+l ! v+1 !
eg’q ) = E Z ((056“ i (l;fuqfvﬂrfn) + mg(” K (l;—quvrﬂwl)) > (23)

nvn

where the notation is entered

ap-*—v+r|zkI |
(ox,)" (ox,)" (0xy)" N

To determine the coefficients (24), it is necessary
to establish a connection between the global coordi-
nate system z,, and the local one associated with the
finite element x.. For an isoparametric finite element,
this relationship will also be linear:

8
Zpr = ZNL (X1, %5, x3)sz"

L=0

f(ﬁv'n) = (24)

=Xy =x3=0

(25)

where is the z/ — k' -th (k' =1,2,3) coordinate of the
L —node in the global coordinate system ( L =1,...,8 ),
N, (x,x,,x;) — the approximating functions (shape
functions) of the L node, which for a finite element
with a linear law of approximation in all three
directions are determined by the formula [10]:

N, = %(1 + xle)(l + xzsz)(l +x,x7),  (26)
where x' is the i-th coordinate (i=1,2,3) of the
L-th (L =1,...,8) node in the local coordinate system
associated with the finite element.

In more detail, the shape functions N, for the
nodes of the finite element can be written as follows:

Nl:%(1_xl)(1_x2)(1_x3),zv é(l+xl)(1—x2)(1—x3),
N, - %(l—xl)(1+x2)(1—x3),N4:%(1+xl)(1+x2)(1—x3),
N5:%(l—xl)(l—xz)(1+x3),N6:é(1+xl)(1—x2)(1+x3),
N7:é(l—x,)(1+x2)(l+x3),Nx:é(1+xl)(l+x2)(1+x3). 27)

Now let’s return to relationship (24) for the
coefficients of expansion of deformations ™
, analyzing them, we can see that some of them
contain coefficients ") that are not included in
the expansion of displacements (15). Therefore,
the deformation expansion coefficients (24)
containing at least one of the terms that are not
included in the displacement expansion (15) should
be removed from the expansion (24). Taking into
account the mentioned rules of the moment finite-
element scheme, the components of the vector of
deformations will take the form:
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&, = 61(?00) + el((l)lo)w(mo) +el((l)m)w(om) +e1((1m)‘l’(0“) ’
&y = eégoo) + ezlzoo \V(loo) + 62201)\” o) e(1201)w o)
& :e§200) +€§1300)\U(100) +e(°1°)w(°1°) +e§1310)w(110)7
gp = el(goo) + elgm v @ 5
_ el(goo) +el(g)10)\v(010) ,
o

The deformation expansion coefficients in (29) in
vector-matrix form will take the form:

le,} =l }[FF].

In this expansion, the matrix [ £/] is formed on
the basis of (24) taking into account the removal of
some coefficients according to the moment finite-
element scheme.

The expansion coefficients of the volume change
function are determined by the ratio:

(29)

6(a+[3+y)8

&(0‘5‘/) _

al“azl‘éga”| Y
(ox') (@) (@) ], .oy

With the linear approximation of movements
according to the moment finite-element scheme, the
volume change function will take the form:

9= é(ooo).

In matrix form, expression (30) will be written as

follows:
(&) = {oc [ £ ] 31

The matrix form of recording the variation of elas-
tic deformation energy (19), taking into account (29),
will take the form:

W= j [3{w}
. 2 -

fofoc | £ ]{we} (k=26 [T foud @, (32)

And taking into account that some components of

this sum can be taken beyond the sign of the triple
integral, we will have:

£ [T 208" fwdav [

B[ )" (-2

F v, 2Ge g [ Er T (o) dV +

W = Smk

7T o) +

}{\ue}dV[Fm 1 o), 33)

or
W = 6{«»«}[@kl[ﬂ"’j’}r[m:{mmv}’ * o
+s{o [R)[ ][] fou)".

here
111

(%)= [[]268*&" (v} {wa} Jadxdrdx, (35)

-1-1-1
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[H"]= m (K - %GJ (ol {vo) JEdadnd, (36)

are the components of the matrix of elastic constants
of an isotropic (quasi-isotropic) material, taking into
account the metric of space.

In expansion (32), all components are defined,
except for the displacement expansion coefficients,
their determination makes it possible to write down
the desired displacement function (15) and, therefore,
to solve the problem. But these coefficients do not
have visible mechanical meaning, so it is reasonable,
as in the classic version of the finite element method,
to move from them to the nodal values of displace-
ments, which have a clear mechanical meaning.

Let us write the linear approximation of the
components of the displacement vector «,. in the global
coordinate system Oz1'z2'z3" for the hexagonal finite
element through the nodal values of the displacements
u;. and the shape functions N, (x,,x,,x;):

8
U = N, (X, %, %) ul,
L=0

here u — is the movement of the L-th node in the
k-th direction in the global coordinate system,
N, (x,,x,,x;) —1s the shape function of the L-th node
of the form (27).

Let us find the connection between the
coefficients of displacements ("’ and the nodal
values of displacements u/ by defining the matrix
of transformations [A]. The matrix [A4] describes the
relationship between shape functions N, and power
functions y”*). Both of them are inherently a set of
power functions, but when describing movements
they are grouped in a combination in different ways,
therefore, to find the matrix [A4] that reflects this
relationship, we use relation (15), on the other hand,
(33) can be written as:

wo = (N {ut) 37)

where {u/} = {1 O u ul ul), ,(f,),u,(j.),u,(f,)} — is the
vector of nodal displacements,

{N,} ={N,,N,,N;,N,, Ns, N, N,;, Ny} — the vector of
shape functions determined by formulas (27).
Comparing (11) and (27), we have the relation:

N =y} 4]

Considering the equality of the right-hand sides of
relations (15) and (37), we can write:

L
{0} = {ul}[A4].
The variation of the energy of elastic deformation,
taking into account (39), will be written in the form:

W = {ut AL E [ YU T AT ()

(3%)

(39)

T

sl LR L IR T AT ) (a0)
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or we can write:

T [ Fr T
6W=6{u,f}[A] |: ’/:H: :H: k/,:.»,~+
H[E R ]
In the last ratio, the stiffness matrix of the finite
element based on the moment scheme for a granular

composite material with a dimension of 24x24 will
have the form:

(e - T T o[ T T )T - 42)

The global stiffness matrix for the entire body
under study is formed based on (2) by summation
over all finite elements.

Numerical results. Using the finite element
method is virtually impossible without creating soft-
ware. To implement the presented stiffness matrix
of the finite element based on the moment scheme,
we will use the “MIPEJIA+” software complex [11],
in which we will use the existing preprocessor and
postprocessor, and to the preprocessor we will add
program blocks that implement the formation of the
stiffness matrix described above. To verify the pre-
sented mathematical calculations and software imple-
mentation, we will determine the stress-strain state of
composite structures.

Let us consider the solution of the planar problem
of the theory of elasticity for a thick-walled long cyl-
inder under the action of internal and external forces.
For an isotropic (quasi-isotropic) material, we will
have the following solution:

][A]T (i @1

B
u, =Ar +—. (43)
r
We determine the unknown constants A and B
from the specified boundary conditions (( o, (1) = —¢ ),
o,(r)=0, where r,r, — the inner and outer radius of
the cylinder, ¢ — the internal pressure, and there is no

external pressure). As a result, we have:

Azl—v{ gr; j B:Hv[ gr’rs J
E \r-1) E \rB-r)

The material of the matrix is steel with mechanical
characteristics of E"=2158 GPa; v =0,3. The
fiber material is tungsten carbide with mechanical
characteristics of E° =697,6 GPa; v' =0,3. The inner
radius of the cylinder is # =0,1 m, the outer radius
of the cylinder is r, =0,15 m, the inner pressure is
q =10 MPa.

The results of calculations with different meshes
of finite elements show stable convergence to the ana-
lytical solution. Analytical solutions and numerical
results for a 6x14%3 discretization grid are given in
Tables 1, 2, 3.

To estimate the error of numerical calculations, we
will use the formula:

= MIOO%,
u

a

ISSN 2786-6254



where u, is the analytical solution and u, is the
numerical calculation.

Table 1 shows numerical results for a small vol-
ume content of spherical inclusions (f = 0...0,3) and,
therefore, elastic constants were calculated according
to formulas (5), (6); Table 2 shows the calculations
for a large volume content of spherical inclusions
(f = 0,7...1) and, therefore, clastic constants were
calculated according to formulas (7), (8). As can be
noted, when the volume fraction of a stiffer inclu-
sion increases, the composite material also becomes
stiffer and, consequently, the displacements of the
points of the inner surface decrease. With the given
finite element grid, the maximum error in all cases
is about 5%, which is most likely related to errors in
the approximation of the geometry of the cylindrical
surfaces. The same picture is observed in the case
of reinforcement with lamellar inclusions (Table 3),
when the elastic characteristics are calculated accord-
ing to formulas (9), (10).

Table 1
Displacement of the inner point of the cylinder
(spherical inclusions, small volume fraction)

83

Table 2

Displacement of the inner point of the cylinder
(spherical inclusions, large volume fraction)

Volume | Analytical solution Numerical Error.

content (formula (43)), solution, % K
of fiber, f x10° m MFES, x10° m

0,7 0,720 0,679 -5,69

0,8 0,580 0,550 -5,17

0,9 0,485 0,461 -4,95

1 0,416 0,395 -5,05

Table 3

Displacement of the inner point of the cylinder
(lamellar inclusions, small volume fraction)

Volume | Analytical solution Numerical Error.
content (formula (43)), solution, % ’
of fiber, f x105 m MFES, x10° m

0 1,344 1,276 -5,06

0,1 1,170 1,113 -4,87
0,2 1,037 0,987 -4,82
0,3 0,930 0,886 -4,73
0,4 0,844 0,804 -4,74
0,5 0,772 0,736 -4,66
0,6 0,712 0,679 -4,63

Volume | Analytical solution Numerical Error.

content (formula (43)), solution, % ’
of fiber, f x10° m MFES, x10° m

0 1,344 1,276 -5,06

0,1 1,214 1,154 -4,94

0,2 1,107 1,053 -4,88

0,3 1,017 0,968 -4,82

In the process of calculations, all components of
the stress-strain state were obtained, so, in Fig. 2 it is
shown the distribution in the cylinder of stress o _ (the
axes are shown in the figure) for a composite with
lamellar inclusions (f = 0,2).

+2.4222407
+1.3582407
+1.4842407
+1.0312407
+5.€ETEH0E
+1.0282406
-3.€128406
-8.2512406

Fig. 2. Stress distribution ¢_ in a hollow cylinder made of composite material
with lamellar inclusions (f'= 0,2)
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Conclusions. An approach to numerical mode- scheme, which allows calculating composite mate-
ling of composite structures with discrete inclusions rials with both compressible and weakly compress-
based on homogenization of heterogeneous material ible components. Numerical calculations using the
is presented. The stiffness matrix of the spatial finite = developed matrix showed a good convergence of the
element is constructed on the basis of the moment obtained results to the known exact solutions.
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