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The article deals with the fractal analysis of images of continuous wavelet
spectra of radar signals with linear frequency modulation, taking into account
the level of additive Gaussian noise and the frequency modulation coefficient.
As a result of the analysis, the numerical value of the level of Gaussian noise
additively added to the signal above which the identification of the terrain
image or signal spectrum is impossible to be obtained. The Mexican Hat
wavelet function, which provides the maximum range of fractal dimensionality
variation with noise variation, is determined. Methods of threshold detection by
proximity of series of scaled wavelet noise and signal scales are investigated.
An example of the Shapiro-Wilk normality test has shown the inefficiency
of using statistical methods to determine the noise threshold of the series of
wavelet coefficients that form the images of spectra. Two methods of detecting
the noise threshold versus global scalograms and autocoherence of the signal
and noise transformed into wavelet coefficient series are considered. The
autocoherence method is more efficient due to the availability of numerical
values. For the identified thresholds of two frequency modulation signals,
with and without additional amplitude modulation, spectrum images are
obtained and maxima of fractal dimension at the noise threshold boundaries
are determined. By numerical values of maxima it is suggested to identify
spectra by noise threshold for neural networks, for example, for preparation of
a set of recognizable images.
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VY cTarTi IpoBeAeHO (ppaKkTaIbHUI aHAJI3 300paXKeHb Oe3MepepBHUX BEHBIET-
CIEKTPIiB pajioiOKallifHUX CUTHAMIB i3 JIHIMHOIO YaCTOTHOK MOIYJIALIEI0
3 ypaxyBaHHAM piBHS aJUTUBHOTO [aycCiBCBKOro IIyMy Ta KoedilieHTa
qacToTHOI Momynsnii. OTpUMaHO YHCENbHE 3HAUEHHSA PIiBHA aJJAUTHBHO
JIOIAHOTO 10 CUrHaTy ['ayciBCBKOTO IIyMy, BUILE PiBHS SIKOTO ileHTU(IKaLis
300pakeHHs MiCLIEBOCTi 200 CIIEKTPY CUTHATY HEMOXIIMBA. Tako BU3HAYEHO
BeilBneT-pyHKIiI0  «MEKCUKAaHCBKUM  Kalelmrox», KoTpa  3ale3medye
MaKCUMaJIbHUI iala30H 3MiHU (PPaKTaIbHOI PO3MIPHOCTI MPH 3MiHI HIyMy.
IIpuxnan Tecty HopmanbHocTi [llamipa-Bunka moxa3aB Hee(eKTHUBHICTbH
BUKOPUCTAHHS CTaTUCTUYHUX METOJIB BU3HAUCHHS IIYMOBOTO IOPOTa PsAiB
BeiiBIEeT-K0A(PPUIIECHTOB, SIKi YTBOPIOIOTH 300pakeHHS CIIEKTPiB. Po3mIsiHyTO
JIBa CIIOCOOM BHSBIEHHS IIYMOBOTO IOPOTY MOPIBHSHO i3 I0OaIbHUMHU
CKaJloTpaMaMu M aBTOKOTEPEHTHOCTI IEPEeTBOPEHOTO Ha psAAM BEUBIET-
Koe(ilieHTiB curHany ta urymy. HaifGinbIm e(yeKTUBHIM Y 3B’SI3KY 3 HASIBHICTIO
YHCIIOBHUX 3HAYCHb € METOJ aBTOKOTE€PEHTHOCTI. JIJIs1 BUSIBIIEHUX IIOPOTiB JIBOX
CHTHAJIiB YaCTOTHOI MOAYJISINIi, 3 JOJATKOBOIO aMILTITYHOIO MOIYIIAII€I0 Ta
0e3, OTpUMaHO 300pa’KCHHS CIEKTPIiB 1 BU3HAUEHO MAaKCUMYMH (hpaKTalbHOI
PO3MIPHOCTI Ha MeXKaxX LIYMOBOTO IOpOTa. 3a YHCIOBUMH 3HAueHHIMH
MaKCHMYMIB 3aIIPOIIOHOBAHO 1IEHTH(]IKyBaTH CIEKTPH 3a PiBHEM LIYMY JUIS
HEHPOHHUX MEpeX, HANpHUKIaJ, Ui IMiJrOTOBKH HaOOpy 300pakeHb, IO
PO3Mi3HAOTHCA.

Introduction. Signal distorted by noise and maxi-
mum critical interference is processed using computer
technology. An example is the distortion of medical
and ultrasound images, localization trajectories, and
visualizations of an object at a distance [1]. Since the
image is a data set, it is very important to reconstruct
the original signal to maximize the amount of data.
We need to take into account that interference can
occur during both signal transmission and reception.

A large number of different ways of filtering the
signal from noise have been described in the litera-
ture. Linear and nonlinear filtering methods [2] such
as Gaussian filter, median filter, mean filter and Wie-
ner filter [1; 3] are widely used for noise reduction.
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A number of works have proposed algorithms for
identification of non-Gaussian noise using various
adaptive filters, such as the Kalman filter [4]. Com-
mon to these methods of information signal process-
ing is filtering by noise removal and restoration of the
useful signal.

The most complex, in our opinion, is the task of
signal processing of radar detection systems. The
task combines both accurate processing of informa-
tion from huge amounts of data with visualization of
the result, and processing of highly noisy signals [5].
The complexity of processing such signals is directly
related to the a priori uncertainty about the probabili-
ties of occurrence of detectable signals [6]. However,
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this area of technology is characterized by the fact that
it often involves signal processing in situations where
the share of noise in the signal may significantly
exceed the information component. This condition
cannot be ignored when developing methodological
approaches to new methods of signal processing.

In addition, it should be noted that the efficiency
of radar systems depends directly on the signal detec-
tion range [6]. This puts an additional requirement to
the applied information technologies of signal pro-
cessing. At the same time, the increase in resolution
is achieved by reducing the pulse duration. This leads
to a decrease in signal power and, consequently, in
the detection range. This problem is a key issue in the
use of information processing techniques in military
radar systems to monitor enemy behavior [7] on the
battlefield.

In recent years, information technology specialists
all over the world actively pay special attention to the
development of radar techniques based on wavelet
transform for recognizing pulse modulation features.
This is confirmed by the active implementation of
innovations in this technology [7].

Literature Review. The use of linear frequency
modulated signals is a compromise solution. The fac-
tor that affects the detection range is the modulation
factor. The authors of the publication [2] propose a
method of detecting a signal with linear frequency
modulation by calculating the fractal dimension of
linear spectrograms using the cell coverage method.
This method does not reflect the peculiarities of sig-
nal modulation due to the limited time resolution of
the Fourier spectrum.

The authors of [3] proposed to solve the problem
of identification of a wide spectrum of signals by
mathematical processing of discrete wavelet coeffi-
cients with subsequent filtering from noise [4—6] and
construction of the correlation matrix of the obtained
series of discrete wavelet coefficients [7].

In publication [8], an algorithm based on the use
of continuous wavelet transform coefficients and
higher order statistics in determining the features of
selected signals was proposed. The principal com-
ponent method was applied to reduce dimensional-
ity. An artificial neural network was used as a clas-
sifier [8].

The continuous wavelet transform method has the
ability to visualize the results. Such a representation
is outlined in [9], which is devoted to the estimation
of the Hurst coefficient [10] from the slope of the
power spectrum based on the wavelet transform. The
estimation of the Hurst coefficient for a volumetric
data set allows us to identify belonging to certain pat-
terns (trends or comparison signals) in the data set.
However, the transformation of the input signal by
accumulation from the mean does not allow to dis-
play individual features of the signal.
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The use of fractal dimensionality is investigated in
the monograph by G. Schuster, “Deterministic Chaos.
Introduction” [11] using the correlation dimension
InC(g)/In(e) (where C(g) is a correlation integral)
on the slopes of graphs InC(g) from In(¢) for differ-
ent noise levels at which, there are observed kinks on
scales corresponding to noise levels below which the
slopes are approximately equal.

However, at the time of publication of this fun-
damental work, the theory of the continuous wave-
let transform was not yet sufficiently developed, and
the author used the Fourier transform to analyze the
spectrum [11 p.65]. Therefore, the type of noise inter-
action with the signal and its property (white or cor-
related) was not determined.

The solution to this question appeared later in
[12 p.512]. Since the neighboring frequencies in the
Fourier analysis for a time series of white noise are
uncorrelated. This is no longer relevant to wavelet
analysis. The correlation between CWT of two differ-
ent scales sl and s2 at different moments of time tl1
and t2 is defined as:

C(sy,5,,8,1,) = (W (5,6 )W (s,,1,) .

In the presence of uncorrelated white noise, the
correlation between the scaling factors may change
the nature of the noise effect on the fractal dimension,
especially in the case of frequency modulation of the
signal, as it may lead to the appearance of additional
spikes. The main change is that the known statisti-
cal methods for determining the noise threshold for
Fourier analysis, are no longer effective for wavelet
reconstruction of image matrices.

Therefore, the computational experiment is rele-
vant and timely, especially in connection with the use
of wavelet transforms for the development of data set
for neural networks

Determination of the dependence of the fractal
dimensionality of the power of the wavelet spec-
trum of a signal on the noise level, frequency mod-
ulation coefficient and wavelet function

We will determine the wavelet coefficients from
the known formula for the continuous local wavelet
spectrum [3-5]:

1 t—b
W -7 J;x(t)w(Tjdt, (1)
where: x(t) is a signal with random component;
is a basic wavelet from the list ‘cmorl1.5’, ‘cgau5’,
‘cgaul’, ‘shan0.5-2’, ‘morl’; a #0 is a scale parame-
ter; >0 is a shift parameter.
The data under study is discrete, so we write for-
mula (1) in the form, selecting two arrays for scales
coeffs for shifts fred:

coe]%,fredz%;x(ti)\v(t‘ ;bj. ()
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When analyzing images of spectra, scale is of
more interest than shift. Therefore, it is necessary to
eliminate the dependence on the shift 5, obtaining a
representative amplitude of the scale inhomogeneity
coeffs for fred shifts.

Obtaining an image of the power spectrum using
the wavelet transform is to use their absolute values
abs(coeffs) rather than the squares of the wavelet
coefficients.

We will use the ratio for a signal with linear fre-
quency modulation:

x(t,. ) =anp cos(2nf0t,. + Tth,.z ) +M;» 3)

where anp is a signal amplitude; f0 is an initial
frequency value; f is a linear frequency modulation
coefficient, # is an uncorrelated Gaussian noise with
zero mathematical expectation.
The estimation of the noise influence is obtained
from the relation:
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where: X(,)=anp cos(2nfotl. + nBtf) .

To calculate the fractal dimension D=2-H through
the Hurst coefficient (H) for a range of absolute val-
ues of scaling wavelet coefficients, we use the fol-
lowing algorithm. We create a range of delay values,
calculate an array of delayed differences and after
linear approximation obtain the Hurst exponent. We
will investigate the change of fractal dimension of
signals in the frequency range from -14 to 14 dB, for
frequency modulation coefficients =128, 256, 512
and initial frequency f0=50 MNz of five continuous
wavelets. To find the wavelet that provides the max-
imum range of variation of the Hurst coefficient (H),
we plot the graph.

It can be seen from the above graphs that the
dependence of fractal dimensionality on noise power
is nonlinear and decreases with decreasing noise. The
range of variation of the dimensionality depends on
the selected wavelet and is maximal except for its
value at =256, which indicates its influence on the
distribution.

For modulation factor i = 256
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Fig. 1. Fractal dimension of the spectrum and time domain of the main wavelet:
a) for modulation coefficient b) ¢) ¢) mexh wavelet
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Analyzing the applicability of statistical meth-
ods for determining the noise threshold for series
of scaling wavelet coefficients of the spectrum
image on the example of the Shapiro-Wilk test

For signal (3) in the noise range from -14 to 14
dB, the noise threshold by the Shapiro-Wilk test is
determined as shown in the following figure:

At uncorrelated noise and correlation of scaling
wavelet coefficients by the ratio [12]:

C(8y,8,,0,8,) =W (s,,1)W (5,,1,) - (5)

The value of noise threshold for continuous wave-
let spectra cannot be determined because the statistics
of detection p over the entire range of noise is zero as
shown in the graph:

Statistical methods of noise threshold detection
using the example of Shapiro-Wilik test are unsuita-
ble for noise threshold detection on wavelet spectrum
images.

Method of detected noise threshold by compar-
ison of global wavelet scalograms

The local power spectrum is determined by rela-
tion (1) and the global one by relation [13]:

E,@)=[W.,db= [ E,(abydb.  (6)

Ratio (6) is called the scalogram or variance of
the wavelet transform. The scalogram E (a) corre-
sponds to the power spectrum smoothed at each scale
by the Fourier spectrum of the analyzing wavelet.
This allows us to obtain more localized power infor-
mation necessary to detect the noise threshold.

We will compare the scalogram of the noise gen-
erated in the scale of the signal with the scalogram
of the deterministic signal with noise, achieving a
change in the noise level of equality of these scalo-
grams.

Shapino-Wilk test. Reject the normality hypothesis

statistic: QL9941 po0 0498 Gawssian nobse threshold: -11.1
014 s

a1z
0104
Q08 4
006

0.0 4

- J
0.0 = v

29

In Fig. 4 on the mashtabograms, the white spots
reflect the noise. The comparison results reflect the
scalograms, in which the Fourier power spectrum and
the global wavelet spectrum with 95% confidence
level are given.

A method for detecting the noise threshold
from the autocoherence of a number of wavelet
coefficients of the signal itself

The crossed wavelet spectrum discussed above for
testing the significance of the relationship between
two processes, one of which is Gaussian white noise,
is difficult to test. Instead, it is better to apply autoc-
oherence according to the series of scaling wavelet
coefficients (2). And calculate the derivatives using
the correlation distance between the series for signal
and noise by the ratio:

a i-o a
A Gdx(t) (t-b
Sy__ai=0 dr, \V( a j @
,_Isf
=
A

It should be noted that the system of equations (7)
is a rational modification of the well-known wave-
let coherence system [14], but it is based not on the
comparison of two different series, but on the com-
parison of the series itself with its derivative in the
time domain.

For reproducibility of the results of comparison
with noise it is necessary to ensure equality of scales
and the same wavelets used for decomposition. In
addition, the size of the image itself (extent) [15] and

Shapiro-wilk test. Accept the nomality hypothesis:
statistic: 09577 07469 Gawssian noise threshald: <1148

Q.14 4

0104 |

008 4
008 4
L]

ooz

0,00 e

b)

Fig. 2. Detection of noise threshold for linearly frequency modulated signal by relation (3):
a) — distribution for noise threshold; b) — distribution up to threshold per step c=0,1 downward c
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Shapiro-wilk test. Reject the normality hypothesis:
statistic: 0,937 pe0.0 Gaussian nodse threshald: <1235
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Shapire-Wilk test. Reject the normality hypothesis:
statistic: 08949 polU0 Gaussian nolse threshold: 17.05
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Fig. 3. Failure of the statistical test for the wavelet spectrum: a) — distribution for 12.35 dB noise;
b) — distribution for 17.5 dB noise

Signal+Gaussian ahvte noke

Gaussian white noke

b)

Fig. 4. Wavelet scalograms: a) for a signal with noise is 6.95 dB for =512 ; b) noise is 7.3 dB

the palette (cmap, aspect) should be the same during
visualization.

Let’s build autocoherence for signals and noise on
one graph by changing the noise level in the range
from -14 to 14 dB. Let’s find the intersection points
of noise and signal series for maxh (“Mexican Hat”)
wavelet.

Analysis of wavelet spectrum autocoherence from
the signal (3) for comparison is necessary together
with the ratio taking into account the amplitude mod-
ulation of the half-sine wavelet:

x(1,)=anp cos(2nfoti + 7t )sin(nt) +m,. (8)
Using the fractal dimensionality of wavelet
spectrum images to prepare DataSet neural

networks with taking account of noise thresh-
olding
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Preparation of images in the form of scalograms
significantly increases the efficiency of neural net-
works for image recognition. In this case, to form a
data set it is necessary to form a set of signals with
different noise levels and at the same time be sure that
the signal carries information and not chaos.

For this purpose, let’s transfer the already defined
noise threshold to the dependence of fractal dimen-
sion on noise for spectra images. For this purpose,
we need to make sure that the character of changes
in fractal dimensionality is close to the changes for
series of scaling wavelet coefficients.

In [16, 17], the following cell covering method
is proposed to calculate the fractal dimensionality of
images. For our problem, the spectrogram images are
reduced to binary so that a pixel is considered filled
but not white. According to the cell coverage method,
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Fig. 5. Determination of noise threshold using autocoherence of continuous wavelet spectrum
for wavelet mexh and scales=range(1,128): a) for frequency modulated signal by relation (3);
b) for signal by relation (8).It should be noted that the noise threshold in both plots is about 0.7,
which corresponds to the noise power. For a frequency modulated signal the level of noise threshold
does not depend on the modulation coefficient

the fractal dimensionality D can be defined as a linear
regression coefficient from the relation:

logl,—logC(s)zo, ®)
s

where: s is the size of the side of the image blocks
in pixels; C(s) is the number of image blocks of size s
that have at least one filled pixel.

Let us define the fractal dimensionality of the
images of the considered spectra:

The visually undetectable image change (Fig. 6)
is identified numerically by the maximum of frac-
tal dimensionality with sensitivity (1.6122-1.6106)/
(-13.3 +11.6)=-0.0016/1.7. Change in fractal dimen-
sion (Fig. 7) with sensitivity (1.6116-1.5979)/
(-11.748.3)=-0.0137/.4. The changes in the third and
fourth digits do not seem significant, however, such a
change is stable and in some cases may be the only
way to select images in the data set for neural net-
work. Such a task is relevant, because the insufficient
number of images associated with their limited selec-
tion strongly reduces their recognition in neural net-
works [17-20].

Discussion. The need for greater accuracy of infor-
mation processing pushes us to search for new meth-
ods of noise filtering. The work performed allows to
prepare any image for noise cleaning, which is impor-
tant for many areas of human activity (machine learn-
ing, computer vision, aerial photography, etc.).

In the article, for the first time, the autocoherence
wavelet of the noisy signal and noise is compared to
determine the level of noise in the signal. It is shown
that the autocoherence of noise depends only on the
law of its distribution and continuous wavelet, and

Computer Science and Applied Mathematics. Ne 1 (2024)

the autocoherence is constant over the whole range
of noise power variation, which allows to use noise
augmentation when preparing data for CNN.

Fractal time series analysis considers the behavior
of the system not only at a given moment but also its
prehistory. Wavelet analysis is applicable to non-sta-
tionary data processing. It provides local high-fre-
quency and global large-scale information about an
object. It also allows us to judge at what point in time
certain signal components appeared. In this article,
for the first time, a noise threshold is found, which
improves the detection accuracy.

The question of the feasibility of using fractal
analysis together with continuous wavelet analysis of
images when preparing a data set for CNN remains
open. Since convolutional neural networks (CNNs)
are used to identify images, terrain, or signal spectra,
in which Gaussian noise is added to the image data
set to improve recognition accuracy [3] and when
the level of added noise is exceeded, it can have the
opposite effect when the image signal is converted
into noise.

Conclusions. Dependences of the fractal dimen-
sionality of wavelet spectra images of a frequency
modulated signal on the noise level and modulation
coefficient are obtained. The Mexican Hat wavelet
function, which provides the maximum range of
fractal dimensionality variation with noise change,
is determined. Methods of threshold detection by
proximity of series of scaled wavelet noise and sig-
nal are investigated. On the example of the Shap-
iro-Wilk normality test the inefficiency of using sta-
tistical methods to determine the noise threshold of
wavelet coefficient series that form images of spec-
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Fig. 6. Spectrum images and maxima of fractal dimensionality for transition through noise threshold
for signal (3): a) wavelet spectrogram image for noise up to noise threshold; b) maximum of fractal
dimensionality for spectrogram image; c) spectrogram image for noise above noise threshold;

d) maximum of fractal dimensionality for spectrogram image

tra is shown. Two methods for detecting the noise
threshold are considered, comparing global scalo-
grams and autocoherence of the signal and noise
transformed into wavelet coefficient series. The
autocoherence method is more efficient due to the
availability of numerical values. For the identified
thresholds for two frequency modulation signals,

Computer Science and Applied Mathematics. Ne 1 (2024)

with additionally amplitude modulation and with-
out. Spectra images are obtained and maxima of
fractal dimensionality at the noise threshold bound-
aries are identified. By numerical values of maxima
it is proposed to identify spectra by noise level, for
example, for preparation of a set of recognizable

images, for neural networks.
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Fig. 7. Spectrum images and maxima of fractal dimensionality for transition through noise threshold
for signal (8): a) wavelet spectrogram image for noise up to noise threshold; b) maximum of fractal
dimensionality for spectrogram image; c) spectrogram image for noise above noise threshold;

d) maximum of fractal dimensionality for spectrogram image
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