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Recently, artificial intelligence (AI) and machine learning (ML) have attracted 
considerable attention in both industry and academia. Since traditional ML methods 
are energy-demanding, they can be applied only to a limited subset of devices with 
significant computing capabilities. However, the rise in complexity of available 
processors and microcontrollers made it possible to integrate ML methods into data 
pipelines on mobile devices, and later – on low-power (few milliwatts) edge devices. 
This concept finally took shape in 2018 and was named TinyML. Its rapid spread is 
fueled by the huge number of manufactured microcontrollers (250 billion) and the 
popularity of the Internet of Things (IoT). In the future, TinyML can be used on every 
device that is part of the IoT, although this will not always be economically justified.
At the same time, the application of TinyML technologies is not straightforward and 
requires a careful assessment of the capabilities as well as selection of both the ML 
algorithm and the peripheral device. This is explained primarily by the lack of generally 
accepted benchmarks of both TinyML algorithms and hardware capabilities for the 
application of ML. There are several approaches to TinyML implementation: software-
oriented, hardware-oriented, and hybrid. Depending on the approach, different methods 
of solving a specific problem are used. Some ML algorithms can be adopted to edge 
devices through the use of simplification and adaptation techniques tailored for neural 
networks (NN). However, the process is not automated and generalized as of now.
This article is devoted to an overview of the concept of TinyML, its main stages 
and features, the most prominent achievements in the fields of speech and image 
recognition, sequence classification and data compression, health diagnostics and brain 
interaction, prediction of equipment malfunctions and anomaly detection, autonomous 
transport and ecology. Unfortunately, the volume of the article does not allow us to 
reveal the specifics of TinyML’s application in other fields and with more details. In 
addition, the article analyzes the problems that arise during ML implementation on 
low-power devices. The purpose of the article is to become a short guide and roadmap 
to the world of TinyML applications.
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Останнім часом штучний інтелект (ШІ) та машинне навчання (МН) 
привернули значну увагу як на виробництві, так і в академічних колах. 
Оскільки традиційні методи МН є енергоємними, то це обмежує їх 
застосування підмножиною пристроїв зі значними обчислювальними 
можливостями. Однак зростання потужності процесорів та мікроконтролерів 
дозволило інтегрувати методи МН для обробки даних спершу на мобільні 
пристрої, а пізніше – на малопотужні (кілька міліват) периферійні пристрої. 
Ця концепція остаточно сформувалась у 2018 році та отримала назву TinyML. 
Її стрімке поширення підживлюється велетенською кількістю вироблених 
мікроконтролерів (250 мільярдів) та популярністю інтернету речей (ІР). 
У перспективі, TinyML може бути використаний на кожному пристрої що є 
частиною ІР, хоча це не завжди буде економічно виправдано.
Водночас застосування технологій TinyML не є простим і потребує ретельної 
оцінки та вибору можливостей як алгоритму МН так і периферійного 
пристрою. Це пояснюється насамперед відсутністю загальноприйнятих 
способів порівняння як алгоритмів TinyML, так і спроможностей 
апаратного забезпечення щодо застосування МН. Існує кілька підходів до 
впровадження TinyML: орієнтований на програмне забезпечення, апаратне 
забезпечення та гібридний. Залежно від підходу застосовуються різні методи 
вирішення конкретної задачі. Деякі алгоритми МН можуть бути перенесені 
на периферійні пристрої досить просто, через застосування прийомів 
спрощення та адаптації нейронних мереж (НМ). Однак на сьогодні їх 
застосування не є автоматизованим та узагальненим.
Ця стаття присвячена огляду концепції TinyML, основних етапів та 
особливостей її застосування, найбільш помітних досягнень в галузях 
розпізнавання мови та зображень, класифікації послідовностей та 
стиснення даних, діагностики здоров’я та взаємодії з мозком, прогнозування 
несправностей техніки та виявлення аномалій, автономного транспорту 
та екології. На жаль, об’єм статті не дозволяє розкрити особливості 
застосування TinyML в решті галузей та більш детально. Крім того, в статті 
проаналізовані проблеми, які виникають при впровадженні технологій МН 
на малопотужних пристроях. Мета статті – стати путівником та дороговказом 
у світ застосувань TinyML. 

Ключові слова: TinyML, 
вбудований ШІ, периферійні 
обчислення, інтернет речей, 
мікроконтролери.
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Introduction. TinyML plays a pivotal role in 
the Industry 4.0 [1] and Industry 5.0 [2] revolutions, 
facilitating the integration of AI-powered computing 
technologies across various sectors, including smart 
cities, the automotive industry, and medical robotics. 
Over the last several decades, considerable effort has 
been put into advancing Machine Learning (ML) from 
cloud premises to mobile devices and further to the edge 
nodes [3]. Specifically, low-power (under a milliwatt) 
embedded devices based on Micro-Controller Units 
(MCUs) have garnered significant attention. Each 
of these “tiny” devices doesn’t exceed few hundred 
Kilobytes in memory, and several Megabytes of flash 
storage where ML models can be stored and operated. 
But there are more than 250 billion MCUs in use 
already and the number grows every year [3]. This is 
largely due to their minimal power consumption and 
low cost, along with their versatility and reliability. 
By integrating with sensors, these systems gain the 
ability to perceive their surroundings; connecting to 
actuators, they can perform various actions, and through 
interconnectivity, they enable the spread of distributed 
intelligence. Embedded technologies form the backbone 
of the Internet of Things (IoT) ecosystem and its myriad 
smart applications: from smart buildings and cities to 
smart metering, agriculture, environmental monitoring, 
health, logistics, and retail. The progression into the 
Industrial Internet of Things (IIoT) has further enhanced 
the capacity for intelligent, real-time processing of vast 
data volumes, leading to innovations in autonomous 
vehicles, smart manufacturing, anomaly detection, and 
predictive maintenance.

The essence of intelligence in embedded 
technologies lies in the learning algorithms that 
empower devices to make informed decisions 
from the data they collect. However, implementing 
Machine Learning (ML) on tiny devices poses 
significant challenges due to stringent architectural, 
power, and latency constraints. These devices operate 
at milliwatt power levels nevertheless are expected 
to deliver real-time responses, especially in critical 
systems such as healthcare monitors, autonomous 
vehicles, or industrial human-robot collaboration. In 
these scenarios, any delay in decision-making can 
result in dire outcomes, including jeopardized patient 
safety, increased road hazards, or industrial operation 
interruptions.

Methods. The aim of the article is to serve 
as a guide for the latest research directions and 
approaches on TinyML. The objective is to gain a 
better understanding of the state of the art of TinyML 
especially in perspective of edge AI. This study seeks 
the newest trends and most prominent challenges 
in the field. For the purpose, a search on web-based 
resources was conducted using relevant keywords. 
The authors then checked the articles manually 
excluding any study out of scope.

Problem Statement. Since 2018, the concept 
of Tiny Machine Learning (TinyML) has emerged 
with a widely acknowledged definition: TinyML 
is a paradigm that facilitates running ML on the 
edge devices with minimal processor and memory 
requirements; hence, the power consumption of such 
systems is expected to be within a few milliwatts 
or less [4]. The hurdles facing TinyML developers 
are significant, particularly because modern neural 
networks, among the most advanced technologies 
today, require billions of parameters [5]. These 
larger networks yield better performance and broader 
applicability but at the cost of energy consumption 
is increased with network size. This escalating 
demand for energy makes the expansion of neural 
networks unsustainable at larger scales, underscoring 
TinyML as not just an attractive but a necessary area 
of research. Market trends underscore this shift, 
showing a preference for deploying less energy-
intensive hardware and simplifying the complexity 
of learning algorithms, emphasizing the need for 
TinyML solutions to become even more efficient. 

In developing TinyML solutions, practitioners 
typically follow one of two traditional approaches 
— ML-oriented (also known as SW-oriented) or 
HW-oriented — or a newer strategy known as 
co-design[6]. Traditional methods keep the design of 
the ML framework and its hardware implementation 
separate. In the ML-oriented approach, specialists 
design, train, and test a model appropriate for the 
application, optimize its parameters, and deploy it on a 
chosen device. Conversely, the HW-oriented strategy 
begins without a predetermined hardware platform, 
focusing instead on creating optimized hardware 
using scaled-down models and techniques. The 
co-design method is innovative because it involves 
ML experts and hardware engineers collaborating 
from the very beginning. They share their expertise 
to design a solution, with hardware engineers delving 
into the mathematical foundations of ML algorithms 
to identify efficient hardware components, and ML 
researchers exploring the latest technologies to 
possibly reconfigure their algorithms for a seamless 
hardware-software integration. This mutual shaping 
of form and function represents the cutting-edge of 
TinyML development [7].

Data pipeline. The standard procedure for 
implementing TinyML, as illustrated in a conceptual 
figure, involves three key stages: training, 
optimization, and deployment. This process can be 
split into two main components: conventional ML 
tasks (such as data collection, algorithm selection, 
model training, and optimization) and tasks specific 
to TinyML (like model porting and deployment).

The initial step in TinyML development involves 
choosing an appropriate algorithm and collecting data, 
either from pre-existing datasets or real-time sensor 
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data. For example, the Google Speech Commands 
dataset can be utilized to develop and test a keyword 
spotting algorithm, but also possible way is to utilize 
sensor data to train a computer vision algorithm for 
autonomous micro-cars. Training typically occurs on 
a high-resource device, such as a server or PC, using 
popular ML frameworks like TensorFlow, PyTorch, 
or Scikit-Learn.

After training, the model undergoes optimization 
through methods such as Pruning, Knowledge 
Distillation, Quantization, and Encoding to meet 
specific performance criteria. Pruning removes 
unnecessary neural network parameters; Knowledge 
Distillation involves teaching a smaller model to 
replicate the output of a larger, pre-trained one; and 
Quantization reduces the numerical precision of the 
network to make it more efficient, though care must 
be taken to avoid significant performance drops.

The final stages involve porting the optimized 
model to a language compatible with MCUs 
(commonly C/C++), using tools like TensorFlow Lite 
Micro to translate the model into a format suitable 
for embedded systems. This step prepares the model 
for deployment in an MCU, where it can perform 
inference tasks directly on sensor data, leveraging the 
machine learning model embedded within [8].

Deployments. The growing popularity of embedded 
technologies has spurred ongoing research into low-
resource technologies, aligning with the objectives 
of TinyML. A vital aspect of TinyML applications 
involves embedded inference mechanisms, which have 
seen a significant amount of research. It is important 
to highlight that models developed using mainstream 
ML frameworks like TensorFlow, PyTorch, and 
Scikit-Learn are typically not directly compatible with 

TinyML due to their substantial memory demands. To 
address this, various runtimes have been introduced to 
facilitate ML/DL implementation on microcontroller 
units (MCUs). Yet, there are essentially three main 
strategies identified for deploying TinyML solutions: 
Manual Programming, Code Generators, and ML 
Interpreters [9].

Manual Programming is often considered the 
most effective approach because it allows for detailed 
customization and optimization. However, this 
method’s drawback is that optimizations are usually 
proprietary and not widely shared, limiting knowledge 
dissemination. Additionally, the diverse nature of 
MCUs complicates the standardization of Embedded 
ML techniques. While Manual Programming can 
enhance performance, it sacrifices ease of replication 
and requires significant time investment, making it 
less suitable for individuals outside the field, such as 
hobbyists. The absence of tools for on-the-fly model 
updates further positions manual programming as a 
necessary, albeit challenging, option. On the other 
hand, Code Generation tools stand out for their 
convenience, offering a way to achieve optimal 
solutions without the need for manual coding. This 
approach significantly simplifies the deployment 
process, making it more accessible to a broader 
audience. Code Generation tools offer a convenient 
and efficient pathway to achieving optimal 
TinyML solutions without the necessity for manual 
programming. Tools like EdgeImpulse and Imagimob 
leverage AutoML can provide comprehensive 
Software-as-a-Service (SaaS) solutions, while others 
serve as repositories for locating third-party TinyML 
libraries. Despite their advantages, a significant 
limitation of Code Generation approaches is the 

 
Fig. 1. Generic TinyML Pipeline
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fragmented market. Many vendors use proprietary 
toolsets and compilers, leading to challenges with 
interoperability and portability across different 
platforms.

Interpreters present a contrasting advantage by 
ensuring superior portability, as their architecture 
remains consistent across various devices. This 
uniformity allows for the easy porting of ML/
DL models without tying the model’s architecture 
to a specific framework. Models can also be 
individually tailored and optimized to meet the 
specific requirements of different devices. However, 
this approach may incur slight performance and 
memory usage overheads. The distinction between 
the model and system-level processes under this 
scheme enhances generalizability and simplifies the 
introduction of benchmarks, facilitating a broader 
application of embedded machine learning.

To make embedded machine learning more 
universally accessible, leading technology companies 
have initiated open-source projects aimed at 
standardizing TinyML approaches. Google’s 
TensorFlow Lite Micro (TFLM) and Microsoft’s 
Embedded Learning Library (ELL) are prime 
examples of such efforts. 

TinyML Applications Overview. There are 
many applications of TinyML, including speech and 
vision-based applications, data pattern classification 
and compression, health diagnosis, brain-control 
interface, autonomous vehicles, phenomics, and 
ecology monitoring. This section details the state-of-
art applications of TinyML using various advanced 
technologies.

Speech-Based Applications. Key applications 
in today’s context include speech detection and 
recognition, online education platforms, and purpose-
driven communication, as illustrated in Figure 2. 
These applications typically demand substantial 
data processing and power consumption on the host 
device. To address these challenges, the TinySpeech 
library has been developed, offering a solution that 
minimizes computational demands and storage 

requirements through the use of deep convolutional 
networks.

In the context of Speech Enhancement, the 
researchers tackled the challenge of optimizing 
the size of the speech enhancement model due 
to limitations in hardware resources. The study 
utilized structured pruning and integer quantization 
techniques on a Recurrent Neural Network (RNN) 
model dedicated to speech enhancement. Their 
findings indicated a significant reduction in the 
model’s size by approximately 11.9 times and a 
decrease in the number of operations by about 2.9 
times. Additionally, the research highlighted the 
effectiveness of neural speech enhancement methods 
in hearing aid devices, notably improving battery 
performance. The necessity for efficient resource 
use in energy-restricted edge devices running voice 
recognition tasks was further emphasized by the 
findings presented in another study. This research 
proposed a strategy for splitting the process and 
suggested a co-design approach tailored for TinyML-
based voice recognition systems. By implementing 
a windowing operation, the researchers managed 
to segregate hardware and software tasks, enabling 
preliminary voice data processing [10]. This approach 
led to reduced energy consumption on the hardware 
side. Furthermore, the study laid out the groundwork 
for future research on optimizing the division between 
hardware and software through co-design, aiming to 
enhance efficiency even further.

Vision-Based Applications. TinyML is pivotal 
for processing computer vision datasets, especially 
when such tasks need to be executed on edge 
devices for swift outcomes. A study highlighted in 
[11] tackled the hurdles of training models on the 
OpenMV H7 microcontroller board. The researchers 
developed a system capable of identifying American 
Sign Language alphabets using an ARM Cortex-M7 
microcontroller, equipped with just 496 KB of frame-
buffer RAM. This effort primarily aimed at overcoming 
the significant issue of high generalization errors 
observed in convolutional neural networks (CNNs), 

 
Fig. 2. Voice recognition
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which, despite high training and testing accuracy, 
struggled to effectively adapt to new scenarios and 
backgrounds with noise interference. The team 
applied interpolation augmentation to address this, 
achieving a notable 98.80% accuracy in testing and 
74.59% in generalization. This approach notably 
mitigated the accuracy loss typically associated with 
quantization in hand sign classification tasks.

In a study detailed in [12], researchers conducted a 
case study to create a gesture recognition device that 
could attach to a cane for use by visually impaired 
individuals. The primary design considerations 
included affordability, precise gesture recognition, 
and efficient battery usage. Data for this project was 
gathered from a gesture dataset, and the ProtoNN 
model was employed alongside a classification 
algorithm for training purposes. The study underscored 
the importance of comprehensively understanding 
gestures and their safety implications, as well as 
exploring potential integration with Android and 
other devices as areas for future investigation.

Data Pattern Classification and Compression. 
The adaptation of TinyML models to process real-
time data has become a focal point for researchers. In 
[13], a pioneering approach was introduced, named 
TinyML with Online Learning (TinyOL), which 
facilitates the incremental online training of models 
on microcontroller units (MCUs) and allows for the 
models to be updated directly on IoT edge devices. 
This system was developed in C++, incorporating 
an extra layer into TinyOL. The methodology was 
applied to the auto-encoder on the Arduino Nano 33 
BLE Sense board, training the model to recognize 
new data patterns. The research highlighted the need 
for creating efficient and optimized neural network 
algorithms that can accommodate online training on 
devices. Meanwhile, [14] addressed the challenge 
posed by the number of activation layers in memory-
restricted AI devices on the edge. To tackle this, Tiny-
Transfer-Learning (TinyTL) was devised to make 
better use of memory on edge devices by bypassing 
the use of intermediate layers for activation.

Health Diagnosis. In response to the COVID-
19 pandemic, there’s an increased necessity for 
continuous monitoring of cough-related respiratory 
symptoms. Researchers introduced a scalable CNN-
based model called Tiny RespNet in [15], designed 
to function in multi-modal environments. This model 
is implemented on the Xilinx Artix-7 100T FPGA, 
offering the advantages of parallel processing, low 
power usage, and high energy efficiency. The Tiny 
RespNet framework is capable of processing various 
types of input, including audio recordings and speech 
from patients, as well as demographic information, 
facilitating effective classification. It successfully 
classifies cough detection and related respiratory 
symptoms across three datasets.

Predictive Maintenance. Of special importance 
for industry applications is the ability of TinyML 
solutions to predict when maintenance should be 
performed for machines of various nature. A study 
[16] introduces a self-contained low-power on-device 
PdM (LOPdM) system based on the cutting-edge 
self-powered sensor (SPS) and tiny machine learning 
(TinyML) techniques. The piezoelectric sensor 
measures vibration of simulated equipment. Result 
data forms input for six different AI models. Two 
of the models, namely the random forest (RF) and 
the deep neural network (DNN) are able to identify 
malfunctions with precision up to 99%. 

	 Study [17] leverages a two-dimensional CNN 
deployed to STMF767ZI microcontroller by means 
of X-CUBE-AI tool to predict remaining useful life 
(RUL) of turbofan engines. Enhanced by L1 norm 
weight pruning and Adam optimization algorithm 
retraining, this method still achieves acceptable 
accuracy comparing to Cloud AI deployment.

Brain-Computer Interface. In the healthcare 
industry, TinyML offers immense potential, notably in 
areas such as tumor and cancer detection, emotional 
intelligence, and predicting health conditions using 
EEG and ECG signals [18]. TinyML technologies 
empower Adaptive Deep Brain Stimulation (aDBS) 
systems [19], which are on the brink of achieving 
significant advancements in clinical applications. 
aDBS is crucial for pinpointing specific biomarkers 
and symptoms related to diseases by directly recording 
brain signals. Given that healthcare often involves 
gathering vast amounts of data and processing this 
information to devise timely interventions for patients, 
creating a system that is both highly accurate and secure 
is essential. This integration of IoT with TinyML within 
the realm of medical science gives rise to what is known 
as the Healthcare Internet of Things (H-IoT) [20]. 
H-IoT’s primary uses include monitoring, diagnostics, 
controlling the spread of diseases, logistics, and 
support systems. For remote health status monitoring 
of patients, it’s critical to develop a system that is not 
only reliable but also features minimal latency and 
is globally accessible. Such a system can be realized 
by combining H-IoT with TinyML and leveraging 
6G-enabled internet service [21].

Autonomous Vehicles. Autonomous vehicles 
play a pivotal role in various emergency scenarios, 
including military operations, human tracking, and 
industrial uses. These vehicles require advanced 
navigation capabilities for the effective detection 
and tracking of targeted objects. The challenge 
of enabling autonomous navigation becomes 
particularly pronounced with smaller-scale vehicles. 
TinyML technology has been applied to enhance 
the autonomous operation of such mini-vehicles, as 
demonstrated in a study using the GAP8 MCI [22], 
which incorporates a convolutional neural network 
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(CNN) framework. This technology was also tested 
on the STM32L4 and NXP k64f platforms, revealing 
that TinyML integration can decrease processing 
delays by up to 13 times while achieving an energy 
efficiency improvement of about 90%.

Furthermore, the exploration of automatic traffic 
scheduling has gained attention as a potential area 
for TinyML application to enhance real-time traffic 
management systems [23]. One innovative approach 
involves using piezoelectric sensors embedded across 
various lanes on a road, employing a two-point time 
ratio technique to detect vehicles through piezo-sensor 
data. This method extends to vehicle classification 
and the prediction of green light timing, using a 
random forest regressor to determine signal duration 
based on the vehicle count in each lane. This system 
was implemented on an Arduino Uno, utilizing the 
m2gen library compatible with Scikit Learn.

Phenomics and conservation of ecology. 
Phenomics is the examination of how an organism’s 
phenotypes evolve in response to genetic variations 
throughout its life. In the realm of plant phenomics, this 
field is particularly focused on identifying significant 
germplasm by leveraging genetic advancements 
across various plant species. A study referenced in 
[24] explored phenomics through image analysis, 
specifically targeting the classification of tomato leaf 
diseases and spider mite infestations. This research 
utilized the Plant-Village tomato dataset alongside 
the YOLO3 algorithm, powered by the DarkNet-53 
architecture, for the automated detection of tomato 
leaves. Additionally, the study applied the SegNet 
algorithm for pixel-wise image segmentation. It also 
reviewed various data analysis tools to assess their 
compatibility with TinyML for phenomics research.

In the sphere of ecological conservation, AI-driven 
analytics have seen substantial advancement. A notable 
study [25] implemented TinyML in small payload 
satellites (SmallSats) to enhance the conservation 
efforts for sea turtles through real-time, vision-based 
TinyML techniques. TinyML’s application extends to 
environmental monitoring as well; for instance, [26] 
detailed a compact deep neural network designed for 
weather prediction. This system, built on the STM32 
microcontroller unit (MCU) and employing the 
X-CUBE-AI toolchain within the Miosix operating 
system, requires 45.5 KB of flash memory and 480 
Bytes of onboard RAM to function.

Anomaly detection. An anomaly refers to an 
occurrence that deviates from the norm or the bulk of 
events. The study cited in [27] explores the suitability 
of TinyML for identifying anomalies in specific tasks. 
Employing a conventional Artificial Neural Network 
(ANN), along with an auto-encoder and a variational 
auto-encoder, the research utilizes the Arduino Nano 33 
BLE Sense module and a Kenmore top load washing 
machine model to pinpoint anomalies during the 

unbalanced spin dry cycle. The findings indicate a high 
level of precision and accuracy, reaching around 90%.

In [28] low-cost thermal infrared sensor with 
32×24 pixels is used to detect anomalies on heat 
maps of different machines. CNN running on an ESP-
WROOM-32 MCU device was able to reach accuracy 
as high as 99.73%.

Challenges. TinyML faces significant challenges 
that impede its growth and development. To 
summarize them and evaluate their importance, most 
cited review articles and surveys on the topic were 
identified in Google Scholar database [1; 3; 8; 29; 30; 
31; 32; 33; 34]. Further on, most cited review papers 
from 2024 [6; 7; 35; 36; 37] were added to include 
the latest insights as well. Only studies in the English 
language were considered.

Most prominent problems and challenges are 
presented and discussed below ranked from most to least 
mentioned. Some of them are renamed for unification. 

1.	Limited Memory Capacity.
Most edge devices feature no more than a few 

hundred KB of RAM memory, and several MB of flash 
(permanent) storage. The volume is consumed by ML 
model as well as by the sensor measurements gathered 
through time. The measurements might be useful to 
overcome possible concept drift: evolution of the 
environment that makes input data dissimilar to those 
used in training set. As a result, the performance of ML 
model degrades. One possible solution is to leverage 
online, on-device learning [13] but this will consume 
more energy as well as processing capacity. Another 
solution is to store data on a neighbor edge server and 
access them on-demand, but this can increase network 
overhead which consumes energy as well [34].

2.	Energy Efficiency.
TinyML accommodates the energy efficiency 

limitation in its paradigm. Minimizing energy 
consumption is crucial for battery-powered or solar-
powered edge devices, which have strict energy quota. 
Energy is consumed by MCU, by network modules, by 
sensors, etc. Ideally, each of the components must be 
flexible enough to lower power consumption according 
to current workload and operating context. That is, 
MCU must dynamically switch to lower frequency 
when performing non-critical tasks, network module 
must adapt network protocol and transmission power 
according to the distance to the furthest receiver, 
sensors must adjust the sampling frequency according 
to the measurements change over time. These are future 
directions for inquiry. Today an MCU can be put to 
deep sleep till the next awake signal either from sensor 
or another peripheral module. Otherwise, it normally 
operates at maximum frequency. The same principle is 
for other components: most of them can be turned on or 
off, can work on pre-defined settings but are unable to 
adapt automatically. Another common approach for the 
problem is task offloading or federated execution [38].
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3.	Processor Power.
Most edge devices operate within a clock speed 

range of 10–1000 MHz. This range can be limiting 
for the execution of complex learning models directly 
on edge devices, affecting the performance and 
responsiveness of TinyML applications. To overcome 
these limitations, alternative architectures are 
researched such as PULP (parallel ultra- low power) 
[39]. It is demonstrated that PULP test implementation 
is 12.87x faster in comparison to ARM Cortex-M4. 
Nevertheless, in many practical cases such speed is 
extensive. Clear tendency to use low-power off-the-
shelf devices such as Arduino Nano 33 BLE (ARM 
Cortex M4, 64 MHz) is shown in [6]. 

4.	Device Heterogeneity.
This problem refers to the variability in the 

characteristics of different edge devices used 
for ML. It’s caused by several reasons: different 
manufacturers adhere to different architectures and 
even more architectures and frameworks are proposed 
every year in new studies. Furthermore, Hardware 
Heterogeneity usually causes Software Heterogeneity 
as device drivers and operating systems are 
incompatible in most cases. Another side of it is the 
existence of multiple ML frameworks and inference 
engines which generate incompatible ML models, i.e. 
cause Models Heterogeneity. As of now, there are no 
realistic solutions proposed for the problem.

5.	Benchmarking.
Hardware and Software Heterogeneity causes 

natural need to compare device performance when it 
comes to ML inference. And memory and processor 
limitations restrict usage of existing ML benchmarks 
which target more powerful computers. There were 
several benchmarks created to fill the gap: MLPerf 
Tiny Benchmark[6], “TinyML benchmark”[40] and 
BiomedBench[41]. Still, together they cover only a 
small fraction of devices, datasets and ML models 

used today. Also, they don’t include more advanced 
algorithms such as transfer learning or online learning. 

6.	Lack of Datasets and Models.
There is large number of datasets mentioned in 

the papers. But only some of them are made public. 
And only part of those demonstrate good balance, 
diversity and are properly annotated. Addressing 
the lack of datasets problem in TinyML involves 
strategies such as data augmentation, synthetic data 
generation, transfer learning, and few-shot learning 
techniques.

Lack of Accepted Models problem refers to the 
absence of widely accepted public ML models. And 
it’s closely related to Lack of Datasets and Device 
Heterogeneity problems. Which means that such 
a model must be trained on a good-quality public 
dataset and must be deployable to most popular 
devices without considerable loss of model metrics. 
One of the explanations of the problem presence is 
that the entire TinyML field is still too young and 
immature to construct proper tools and implement 
the solution.

Conclusions. TinyML emerged as a response 
to the growing need for bringing machine learning 
capabilities to resource-constrained devices, such 
as those used in IoT applications. It addresses the 
challenge of implementing AI in environments where 
computing power, memory, and energy availability 
are limited. By optimizing ML models to run 
efficiently on small, low-power devices, TinyML 
enables intelligent data processing at the edge, 
reducing the need for constant cloud connectivity 
and thus enhancing privacy, response times, and 
operational efficiency. 

Still there are serious challenges to consider before 
deploying ML models to edge devices. This leaves 
multiple opportunities for further research directions 
in the field.
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