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Задача покриття кінцевих множин точок на площині фігурами різних типів 
належить до складних задач дискретної оптимізації. Існує досить багато 
варіантів цієї задачі, більшість яких належать до класу NP-важких задач. 
Для пошуку точних розв’язків задач покриття відсутні алгоритми 
поліноміальної трудомісткості. Звичайно, існують точні алгоритми 
для цієї задачі, але всі вони зводяться до повного перебору варіантів. 
Навіть більше, невідомі й наближені алгоритми розв’язку таких задач 
із заданими оцінками точності. Тому значний інтерес становлять 
розроблення та дослідження евристичних методів оптимізації. Одним 
із перспективних напрямів є розроблення алгоритмів, заснованих на 
відомих метаеврістичних підходах, які з успіхом використовуються для 
вирішення багатьох задач дискретної оптимізації.
Одним зі слабких місць використання метаевристик є наявність обмежень 
у багатьох задачах точкового покриття. Зокрема, це всілякі перепони, 
обмеження розміщення точок, обмеження, пов’язані з можливими 
перетвореннями точок у координатному просторі (зрушення, повороти). 
Тому найчастіше доводиться модифікувати відомі алгоритми. Це призводить 
до великої різноманітності метаевристик, які відомі за однією назвою 
(генетичний алгоритм, мурашиний алгоритм), але насправді орієнтовані 
на чітко визначене коло задач. Це призводить до труднощів у створенні 
програмних продуктів, які стають індивідуальними для різних задач.
Основна мета даної роботи – розробити універсальний підхід до 
розв’язання складних в обчислювальному сенсі задач, який дозволяє 
використовувати відомі метаеврістики для різних класів задач покриття 
без суттєвих змін алгоритмів. Для цього запропоновано метод побудови 
гібридних алгоритмів, що є комбінацією фрагментарного алгоритму, який 
є індивідуальним для кожного виду задачі покриття, і метаеврістики, яка 
вже не прив’язана до конкретного класу задач. Такий метод може бути 
легко перенесений і на інші класи задач дискретної оптимізації, для яких 
можна побудувати фрагментарну модель.
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покриття множини точок, 
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РОЗДІЛ I. ПРИКЛАДНА МАТЕМАТИКА



6

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

THE SHUFFLE FROG LEAPING ALGORITHM  
FOR THE PRODUCTION LOCATION PROBLEM 

Kozin I. V.
Doctor of Physical and Mathematical Sciences, Professor,

Professor at the Department of Economic Cybernetics
Zaporizhzhia National University

Universytetska str., 66, Zaporizhzhia, Ukraine
orcid.org/0000-0003-1278-8520

ainc00@gmail.com

Sardak O. V.
Postgraduate Student in the Specialty “Applied Mathematics”

Zaporizhzhia National University
Universytetska str., 66, Zaporizhzhia, Ukraine

orcid.org/0009-0001-2087-0287
karnelcore@gmail.com

The task of covering the end multiplicities of points on a plane with figures of 
various types can be extended to complex problems of discrete optimization. 
There are a lot of options for this problem, most of which fall into the class of 
NP-important problems. Thus, in order to find precise solutions to problems 
using daily polynomial complexity algorithms. It is important to find precise 
algorithms for this task, otherwise it will all be reduced to a complete 
enumeration of options. Moreover, there are unknown and close algorithms for 
decoupling such problems from given accuracy estimates. Therefore, it is of 
significant interest to develop and investigate heuristic optimization methods. 
One of the promising directions is the development of algorithms based on 
familiar meta-heuristic approaches that can be successfully used for a wide 
variety of discrete optimization problems. 
One of the weaknesses of using metaheuristics is the presence of restrictions 
in many point coverage problems. In particular, these are all sorts of obstacles, 
restrictions on the placement of points, restrictions associated with possible 
transformations of points in coordinate space (shifts, rotations). Therefore, it 
is often necessary to modify known algorithms. This leads to a wide variety 
of metaheuristics, which are known by one name (genetic algorithm, ant 
algorithm), but are actually focused on a clearly defined range of problems. 
In turn, this leads to difficulties in creating software products that become 
individual for different problems.
The main goal of this work is to develop a universal approach to solving 
computationally complex problems, which allows using known metaheuristics 
for different classes of coverage problems without significant changes to the 
algorithms. For this purpose, the method of randomized hybrid algorithms is 
proposed, which is a combination of a fragmented algorithm, which is individual 
for each type of problem, and meta-heuristics, which is no longer tied to a specific 
class of problems. This method can be easily transferred to other classes of 
discrete optimization problems, for which a fragmented model may be needed.

Key words: discrete 
optimization, multiply point 
problem, metaheuristics, 
oriented fragmentary structure, 
fragmentary model.

Вступ. Задачі покриття множин точок на пло-
щині вирізняються великим різновидами поста-
новок. Серед них існують як задачі неперервного 
типу, так і задачі дискретні. Більшість класів 
дискретних задач оптимального покриття точок 
відносять до NP-важких задач [1–3], для яких 

невідомі точні алгоритми пошуку оптимального 
розв’язку, складність яких обмежена поліномом 
від довжини умови задачі. Зокрема, до таких кла-
сів належать різні варіанти задачі покриття точок 
різноманітними фігурами на площині як без пере-
тинів цих фігур, так і з можливими перетинами, 
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різні варіанти задач прямокутного розкрою [4–7], 
задачі покриття вершин графа типовими підгра-
фами [8; 9] та багато інших [10; 11]. 

Такі задачі часто виникають у металургії, тек-
стильній і деревообробній промисловості, земле-
користуванні й інших практично важливих напря-
мах діяльності. Відсутність точних алгоритмів 
розв’язання таких задач призводить до різнома-
нітності різних наближених методів, які зазвичай 
не є універсальними та розраховані на викори-
стання в конкретних індивідуальних постановках. 
Узагальненням таких методів є метаевристики 
різних типів [12–14], які за розумний час дозволя-
ють отримати наближені розв’язки задач (хоч і без 
теоретичного обґрунтування). Відносна простота 
метаевристик робить їх зручним і простим інстру-
ментом для створення комп’ютерних програм для 
різних завдань, які виникають на практиці.

Підтвердженням якості метаевристик є, 
по-перше, накопичений досвід їх використання, 
по-друге, перевірка на великій кількості тесто-
вих завдань. На жаль, різноманітність обмежень 
реальних задач призводить до того, що застосо-
вувані метаевристики стають індивідуальними і 
не можуть бути просто перенесені на інші класи 
задач.

У роботі пропонується підхід до дискретних 
задач покриття множин точок із використанням 
орієнтованих фрагментарних структур. Викори-
стання цих об’єктів дозволяє розробити гібридний 
алгоритм на базі комбінації фрагментарного алго-
ритму й будь-якої метаеврістики. До того ж усі 
обмеження задачі враховуються на етапі роботи 
фрагментарного алгоритму, а метаеврістика стає 
універсальною і не залежить від обмежень задачі. 
Огляд літератури. У літературі відомо багато 
різних постановок задач покриття множин точок 
на площині. Почнемо з найбільш простих задач 
покриття множин точок однаковими фігурами 
[15–21]. 

Нехай задана кінцева множина точок площини 
X A A Rn� �{ ,..., }1

2 . Кожна точка Ai  визначається 
своїми Декартовими координатами ( , )x yi i .

Задача покриття множини точок колами 
заданого радіуса. 

Розглянемо набір кіл заданого радіуса R із цен-
трами в точках множини X. Задача полягає у від-
шуканні мінімального числа кіл із цієї множини, 
які містять усі точки множини X. Тобто потрібно 
вибрати підмножину індексів I n⊆ { , ,..., }1 2  міні-
мальної потужності так, що для будь-якого 
k n=1 2, ,...,  знайдеться елемент i I0 ∈  такий, що 

( ) ( )x x y y Rk i k i� � � �
0 0

2 2 .
Задача покриття множини точок колами різ-

них радіусів. 
Більш складною є задача покриття множини 

точок X колами, радіуси яких можуть бути різ-

ними. Розглядається множина різних позитивних 
чисел T R R Rs= { , ,..., }1 2 . Потрібно покрити множину 
точок колами, радіуси яких належать множині 
T. Оптимальне покриття визначається двома кри-
теріями – кількістю елементів покриття (має бути, 
за можливості, мінімальним) і сумарною площею 
кіл покриття. Другий критерій також має бути 
якнайменшим.

Ускладненням даних постановок є задача крат-
ного покриття, в якій кожна точка множини X 
повинна покриватися не менш ніж k k( )>1  елемен-
тами покриття. Також можна розглядати покриття 
фігурами, які не є колами.

Задача покриття плоских фігур.
Тепер розглянемо випадок, коли множина 

точок Х є фігурою на площині (з нескінченною 
множиною точок). Найбільш відомими задачами 
цього класу є задачі прямокутного розкрою [4–7]. 
Задача гільйотиного розкрою розглядається в 
багатьох роботах. Для даного класу задач розро-
блено багато точних і наближених алгоритмів. 
Але вдосконалення цієї задачі, коли потрібно роз-
ташувати на заданій фігурі деякий набір заданих 
фігур, є досить складним. 

Задача покриття вершин графа.
Окремо серед задач покриття стоїть задача 

покриття вершин графа [1–3]. Нехай задано граф 
G V E= ( , )  із множиною вершин V і множиною 
ребер E. Потрібно знайти набір підграфів, що 
містить всі вершини множини V. Зазвичай на під-
графи накладаються обмеження щодо виду під-
графа (ребро, зірка, трикутник тощо).

Результати. Фрагментарна модель опти-
мізаційної задачі. Орієнтованою фрагментар-
ною структурою [13] ( , )X E  на кінцевій множині 
X називається сімейство впорядкованих наборів 
E E E En� � �1 2, ,...,  таких його елементів, що для будь-
якої непустої послідовності E x x x Ei k� �( , ,..., )1 2   
будь-яка її початкова підпослідовність 
( , ,..., ), ''x x x k kk1 2  <  також належить E.

Елементи із множини Е називатимемо допу-
стимими фрагментами. Елементарним фрагмен-
том називатимемо допустимий фрагмент, що 
складається з одного елемента. Максимальний 
фрагмент – допустимий фрагмент, який не є під-
множиною іншого фрагмента. Нехай A E∈ . Умову 
для елемента x X∈ , за якої A x E� �� , називати-
мемо умовою приєднання елемента x.

Визначимо фрагментарний алгоритм як алго-
ритм побудови максимального фрагмента фра-
гментарної структури.

Цей алгоритм належить до класу «жадібних» 
алгоритмів і складається з таких кроків:

а) на початковому кроці елементи множини X 
лінійно впорядковуються;

б) на першому кроці алгоритму обирається 
порожня множина X 0 � �;
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в) на кроці з номером k ≥ 2  вибирається 
перший за обраним упорядкуванням елемент 
x X Xk� �\ ,1  такий, що має властивість приєднання 
X x Ek � � ��1  ;

г) алгоритм закінчує роботу, якщо на черго-
вому кроці не вдалося знайти елемент x X Xk∈ \ , 
який задовольняє властивості приєднання.

Максимальний фрагмент, який є результатом 
роботи фрагментарного алгоритму, залежить від 
обраного упорядкування на множині X. Кожне 
упорядкування кінцевої множини задається 
перестановкою її елементів. Таким чином, будь-
який максимальний фрагмент може бути описа-
ний відповідною перестановкою елементів мно-
жини X. 

Припишімо кожному допустимому фрагменту 
невід’ємну вагу, тобто визначимо функцію 
� : E R� �

1 . Припускатимемо, що функція ρ  моно-
тонна зростаюча за включенням. Якщо A B E, ∈  і 
A B⊆ , то � �( ) ( )A B� . Задача оптимізації на орі-
єнтованій фрагментарної структурі – це задача 
відшукання допустимого фрагмента максималь-
ної ваги. Очевидно, що для монотонно зростаю-
чих ваг оптимальне рішення буде максимальним 
фрагментом.

Задача може ставитися також іншим чином, 
без урахування монотонного зростання ваг, а 
саме: знайти максимальний фрагмент максималь-
ної (або мінімальної) ваги. 

Кожний максимальний фрагмент визначається 
відповідно заданим лінійним порядком перегляду 
елементарних фрагментів, тобто перестановкою 
s Sn∈ , де n – кількість елементів множини X. Ця 
перестановка визначає результат роботи фрагмен-
тарного алгоритму, який побудує необхідний 
максимальний фрагмент. У кожній переста-
новці s Sn∈  можна зіставити єдиний максималь-
ний фрагмент, який їй породжується. Позна-
чимо відповідне відображення через � : S En � .  
Має місце природна комутативна діаграма відо-
бражень:

    

  

   

S

F

E R

n

� ��

�

↘ �
1

,

яка перетворює задачу оптимізації на орієнтова-
ній фрагментарній структурі на задачу оптиміза-
ції на множині перестановок. Будь-яка переста-
новка є допустимою. Усі умови, які відповідають 
індивідуальній задачі, сховані в умові приєднання 
фрагментів. Для великих значень n задача пошуку 
оптимальної перестановки зазвичай є важкою 
в обчислювальному сенсі. Тож для таких задач 
виправдано застосування метаевристик на мно-
жині перестановок. 

Деякі з таких метаеврістик описано в наступ-
ному розділі.

Метаеврістики для безумовної оптимізації на 
множині перестановок.

Розглянемо загальну задачу безумовної опти-
мізації на множині перестановок Sn з n елементів: 
знайти перестановку, для якої функція F S Rn: � �

1  
приймає найменше (або найбільше) значення.

Розглянемо метаеврістики, що використову-
ють метрику Кендала на просторі перестановок 
Sn . Відстанню між двома перестановками назива-
ється мінімальне число транспозицій, необхідне 
для перетворення першої перестановки на другу. 
Найпростіша з таких метаеврістик – локаль-
ний алгоритм з випадковим вибором початкової 
точки.

Локальний алгоритм передбачає такі кроки:
а) на початковому етапі вибирається випадкова 

перестановка (наприклад, за допомогою алго-
ритму Фішера – Йетса) та обчислюється значення 
цільової функції на цій перестановці;

б) на етапі з номером k проглядається 1-окіл 
перестановки, вибирається як нове наближення 
точка, у якій значення цільової функції мінімаль-
не(максимальне) в околі, що розглядається;

в) якщо отримана на черговому етапі переста-
новка збігається з перестановкою, отриманою на 
попередньому етапі, то алгоритм закінчує роботу. 

Другим прикладом метаеврістики, яку можна 
застосовувати для пошуку субоптимальних розв’яз-
ків на множині перестановок, є еволюційний алго-
ритм із геометричним оператором кросовера.

Використовується стандартна схема еволю-
ційного алгоритму на перестановках. Наведемо 
коротко принцип роботи такого алгоритму [13; 
19]. Як базова множина рішень вибирається мно-
жина всіх перестановок з n елементів. На почат-
ковому етапі застосовується оператор початкової 
популяції, що будує першу поточну популяцію 
рішень Y0 . На кроці з номером k k( )≥ 0  алгоритму 
визначена поточна популяція Yk , яка на початко-
вому кроці збігається з Y0 . Для кожного з елемен-
тів s Yk∈  обчислюється значення критерію F s( ) .

Далі за допомогою оператора відбору в поточ-
ній популяції Yk  вибирається множина пар для 
кросовера. До кожної пари з вибраної множини пар 
застосовується оператор кросовера Cross, а потім 
до результату кросовера застосовується оператор 
мутації. Нехай U u u un= ( , ,..., )1 2 іV v v vn= ( , ,..., )1 2  – дві 
довільні перестановки. Перестановка-нащадок 
будується як внутрішня точка відрізка, що з’єд-
нує перестановки-батьки. У метриці Кендала 
таку точку можна отримати так: послідовності U 
і V проглядаються з початку. На черговому кроці 
вибирається найменший з перших елементів 
послідовностей і додається в нову перестанов-
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ку-нащадок. Потім цей елемент вилучається із 
двох послідовностей-батьків. Наприклад:

Cross ((4, 3, 1, 2, 8, 7, 6, 5), (3, 4, 2, 6, 1, 5, 8, 7)) 
= (3, 4, 1, 2, 8, 6, 5, 7).

Оператор мутації Mut із заданою імовірністю 
�� ( , )0 1  виконує випадкову транспозицію (заміну 
місцями двох елементів) у перестановці. Заува-
жимо, що існують також інші варіанти оператора 
мутації. Таким шляхом знаходиться множина 
Y  елементів-нащадків. До проміжної популяції 

Y Y∪  , що є об’єднанням поточної популяції та 
множини нащадків, застосовується оператор ево-
люції, який виділяє в цій популяції нову поточну 
популяцію. Процес еволюції повторюється доти, 
доки буде дотримано умову зупинки еволюцій-
ного алгоритму. Блок-схема еволюційного алго-
ритму наведена на рисунку 1. 

Натепер існує безліч метаеврістик у метрич-
ному просторі, які можна використовувати для 
пошуку субоптимальної перестановки. Серед них 
алгоритм перемішаних стрибаючих жаб, алго-
ритм імітації відпалу, алгоритм мурашиної коло-
нії тощо. 

Нехай оптимізаційна задача може бути пред-
ставлена в термінах фрагментарної моделі. Якщо 
за цільову функцію обирати накриваючу функ-
цію фрагментарної моделі цієї задачі, отримаємо 
гібридний алгоритм для пошуку субоптимальних 
розв’язків задачі. Для отримання значень цільової 
функції використовується фрагментарний алго-
ритм, який є індивідуальним для кожного класу 
дискретних оптимізаційних задач з орієнтованою 
фрагментарною структурою. Як приклад побу-
дови фрагментарної моделі розглянемо один з різ-
новидів задачі покриття множини точок на пло-
щині.

Фрагментарні моделі задачі покриття множини 
точок на площині.

Будемо розглядати задачу покриття множини 
точок у такій загальній постановці. Нехай задана 
кінцева множина точок площини X A A Rn� �{ ,..., }1

2  

і набір типів фігур, які можуть виступати елемен-
тами покриття. У кожній такій фігурі виділена 
точка, яку будемо називати базовою. Розташу-
вання цієї точки на площині повністю визначає 
позицію конкретної фігури. Наприклад, для кіл 
заданого радіуса – це центри кіл. У множині X 
виділено підмножину Y X⊆ – точки, де можуть 
бути розташовані базові точки фігур – елементів 
покриття. Для кожної точки y Y∈  визначено кін-
цевий набір фігур � y y y y

qy� { , ,..., }� � �1 2 , базова точка 
яких може бути розташована в точці y. Такі фігури 
на площині будемо називати допустимими. Зви-
чайно, допустима фігура, окрім точки y, покри-
ває і деякі інші точки множини X. Для кожної 
фігури A, базова точка якої розташована в точці y, 
визначена позитивна вага � �� ( , )A y . Допустимим 
розв’язком задачі покриття будемо називати пару 
U Z A= ( , ) , що складається із множини попарно 
незбіжних точок Z у y y Ys� �{ , ,..., }1 2  і набору допу-
стимих фігур A A A As= { , ,..., }1 2 , базові точки яких 
розташовані у відповідних точках множини Z, усі 
точки множини X містяться в об’єднанні фігур 
Ai

i

s

=1
 . Вагою допустимого розв’язку U називається 
число � �( ) ( , )U A yi i

i

s

�
�
�

1
. Задача оптимізації полягає 

у відшуканні допустимого покриття, вага якого 
мінімальна.

Побудуємо фрагментарну модель загальної 
задачі покриття. Визначимо розмір перестановки 
за формулою N qy

i

s

i
�

�
�

1
. Перенумеруємо послідовно 

всі пари ( , )
, ,...,

, ,...,yi y
j

i i s

j qi�
�

�

1 2

1 2 числами від 1 до N. Візьмемо 
будь-яку перестановку цих чисел і послідовність 
пар ( , )yi y

j

i
ϕ , що відповідає цій перестановці. Побу-

дуємо допустимий розв’язок задачі покриття, 
що відповідає заданій перестановці. Для цього 
потрібно визначити фрагментарний алгоритм, 

Рис. 1. Еволюційний алгоритм алгоритм
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що по перестановці будує допустимий розв’язок 
задачі покриття. На початковому кроці алгоритму, 
на кожному кроці k фрагментарного алгоритму 
буде побудовано пару U Z Ak k k= ( , ) . Визначимо 
умову приєднання чергового елемента ( , )yi y

j

i
ϕ  

до пари Ur . Щоб побудувати наступну пару 
U Z Ak k k� � ��1 1 1( , )  за правилом:

Z Z y A Ak k i k k y
j

i� �� � � �1 1{ }; { }  � ,
потрібно дотримання таких умов: 1) y Zi k∉ ; 2) під-
множина точок множини X, що міститься в об’єд-
нанні фігур набору Ak y

j

i
�{ }�  хоча б на одну точку 

більше за підмножину точок множини X, що міс-
тяться в об’єднанні фігур набору Ak . Будь-який допу-
стимий розв’язок задачі може бути досягнутий 
належним вибором перестановки із множини SN . 

Розглянемо як приклад задачу покриття заданої 
множини X A A Rn� �{ ,..., }1

2  точок площини колами 
радіуса R із центрами в цій же множині точок. Вага 
кожного кола дорівнює одиниці. Задача оптиміза-
ції полягає у знаходженні мінімального числа кіл 
із центрами в точках множини X, які містять усі 

точки множини X. Тобто базовою точкою є центр 
кола радіуса R.

Беремо перестановку чисел i i in1 2, ,...,  від 1 до n. 
Будуємо множину кіл відповідно до умови: коло 
із центром в точці Aik  додається до цієї множини, 
якщо воно містить хоча б одну точку множини X, 
яка не ввійшла в об’єднання вже обраних кіл. Алго-
ритм закінчує роботу тоді, коли всі точки множини X 
увійдуть в об’єднання обраних кіл. Вага розв’язку – 
це кількість кіл, які до нього ввійшли. Для пошуку 
субоптимального розв’язку можна використовувати 
будь-яку метаеврістику на множині перестановок. 

Висновки. У роботі було наведено принцип побу-
дови гібридних алгоритмів для розв’язання задачі 
покриття множини точок на площині. Для пошуку 
субоптмальних розв’язків задачі покриття запропо-
новано використання гібридного алгоритму, який 
засновано на комбінації фрагментарного алгоритму й 
однієї зі стандартних метаеврістик на множині пере-
становок. Запропонована методика побудови гібрид-
них алгоритмів легко може бути розширена й для 
інших варіантів задач покриття точок.
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