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Для математичного моделювання механічної поведінки волокнистих 
композиційних матеріалів з високою частотою армування використовують 
процедуру гомогенізації. Це дозволяє представити неоднорідний 
композиційний матеріал «уявним» гомогенізованим матеріалом, 
механічні властивості якого описуються ефективними пружними 
сталими. Для односпрямованого волокнистого композиційного 
матеріалу гомогенізований матеріал буде мати транстропні властивості 
із площиною ізотропії, перпендикулярною осі волокон. Для опису такого 
матеріалу необхідно знати п’ять ефективних пружних сталих. Для 
знаходження ефективного повздовжнього модуля зсуву застосовано метод 
представницького об’ємного елемента. Цей метод базується на тому, що 
із композиційного матеріалу вирізається представницький об’ємний 
елемент, що містить одне волокно з матрицею, що його оточує. Для цього 
елемента розв’язуються найпростіші задачі пружності. Для знаходження 
ефективного повздовжнього модуля зсуву розв’язується дві крайові задачі 
про повздовжній чистий зсув. Перша задача про сумісне деформування 
представницького об’ємного елемента, що складається з пористої 
матриці у формі порожнистого циліндра й ізотропного волокна у формі 
суцільного циліндра. На межі розділу матеріалу матриці та матеріалу 
волокна задаються умови неперервності ряду компонентів напружено-
деформованого стану. Друга, аналогічна задача про деформування 
представницького об’ємного елемента гомогенізованого композиційного 
матеріалу у формі суцільного циліндра. Ефективний повздовжній модуль 
зсуву знаходиться з умови рівності осьових переміщень для будь-якої 
точки зовнішньої циліндричної поверхні в обох задачах. У результаті 
ефективний повздовжній модуль зсуву композиційного матеріалу є 
функцією пружних сталих матеріалу матриці та матеріалу волокна, 
пористості матриці й об’ємної частки волокна в композиті. За допомогою 
отриманої залежності проаналізовано залежність величини ефективного 
повздовжнього модуля зсуву від величини показників пористості матриці 
й об’ємної частки волокна в композиційному матеріалі.
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матеріал, пориста матриця, 
транстропне волокно, 
ефективний модуль зсуву, 
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The homogenization procedure is used for mathematical modeling of the 
mechanical behavior of fibrous composite materials with a high reinforcement 
frequency. This allows the representation of a heterogeneous composite 
material by an “imaginary” homogenized material, the mechanical properties 
of which are described by effective elastic constants. For a unidirectional 
fibrous composite material, the homogenized material will have transtropic 
properties with an isotropy plane perpendicular to the fiber axis. To describe 
such a material, it is necessary to know five effective elastic constants. The 
representative volume element method was applied to find the effective 
longitudinal shear modulus. This method is based on the fact that a representative 
volume element containing one fiber with its surrounding matrix is cut from 
the composite material. The simplest elasticity problems are solved for this 
element. To find the effective longitudinal shear modulus, two boundary value 
problems are solved for longitudinal pure shear. The first problem is about the 
joint deformation of a representative volume element consisting of a porous 
matrix in the form of a hollow cylinder and an isotropic fiber in the form of 
a solid cylinder. At the interface between the matrix material and the fiber 
material, the conditions of continuity of a number of components of the stress-
strain state are set. The second, similar problem is about the deformation of 
a representative volume element of a homogenized composite material in the 
form of a solid cylinder. The effective longitudinal shear modulus is found 
from the condition of equality of axial displacements for any point of the outer 
cylindrical surface in both problems. As a result, the effective longitudinal 
shear modulus of the composite material is a function of the elastic constants 
of the matrix material and the fiber material, the porosity of the matrix, and the 
volume fraction of the fiber in the composite. Using the obtained dependence, 
the dependence of the effective longitudinal shear modulus on the matrix 
porosity and fiber volume fraction in the composite material was analyzed.

Key words: composite material, 
porous matrix, transtropic 
fiber, effective shear modulus, 
homogenization.

Вступ. Посилення вимог до сучасних при-
строїв, машин і механізмів приводить до необ-
хідності вдосконалення конструкційних мате-
ріалів для їх виробництва. Одними з найбільш 
перспективних видів матеріалів є композиційні 
матеріали, які складаються із двох і більше ком-

понентів. Варіювання видами матеріалів компо-
нентів, їх часткою в композиті дає змогу управ-
ляти властивостями матеріалу, що створюється. 
Для прогнозування властивостей майбутнього 
композиційного матеріалу на макрорівні та для 
їх моделювання під час розрахунків конструкцій 
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постає потреба у створенні математичних моде-
лей для опису механічної поведінки. Беручи до 
уваги, що для створення композитів використову-
ють значну кількість армувальних елементів, ура-
хувати кожний із них у цих моделях дуже складно. 
Тому популярними є гомогенізовані моделі нео-
днорідних матеріалів, тобто коли композиційний 
матеріал представляється уявним однорідним, 
але таким, щоб його механічна поведінка макси-
мально збігалась із поведінкою вихідного матері-
алу. Механічні характеристики зазначених уявних 
матеріалів називають ефективними.

Визначення ефективних механічних характе-
ристик є складним завданням і потребує макси-
мального врахування особливостей механічних 
властивостей компонентів композиту та специ-
фіки взаємодії цих компонентів у неоднорідному 
матеріалі. Якщо розглядати односпрямовані 
волокнисті композиційні матеріали, то гомоге-
нізований матеріал, що їх представляє, доцільно 
вважати транстропним, із площиною ізотропії, 
перпендикулярною осі волокон. Щоб повною 
мірою описати механічну поведінку транстроп-
ного матеріалу, необхідно визначити п’ять ефек-
тивних пружних сталих. Огляд літератури. 
Розв’язанню таких задач присвячена робота [3], 
у якій визначено ефективні в’язкопружні харак-
теристики за повздовжнього деформування одно-
спрямованого волокнистого композиту методом 
представницького об’ємного елемента. Продов-
женням цієї роботи є стаття [7], де знайдено ана-
логічні в’язкопружні характеристики композицій-
ного матеріалу, але закон стану матеріалу матриці 
на основі спадкової теорії Больцмана – Вольтерри 
описує релаксацію модуля зсуву, на відміну від 
роботи [3], де він застосовувався до модуля пруж-
ності матеріалу матриці.

У праці [9] визначаються ефективні пружні 
властивості композиту, армованого довгими воло-
кнами, за наявності поперечної ізотропії матері-
алу. Ефективні пружні характеристики отримані 
методом представницького об’ємного елемента 
для двох схем армування волокнами (гексаго-
нального та квадратного). Проаналізовано вплив 
об’ємної частки та жорсткості міжфазного сере-
довища на ефективні механічні властивості ком-
позиту. 

Стаття [10] присвячена моделюванню ефек-
тивних пружних і в’язкопружних властивостей 
композиційних матеріалів, армованих короткими 
волокнами. Дослідження проводилось для мате-
матичних моделей представницьких об’ємних 
елементів матеріалу за допомогою методу скін-
ченних елементів.

У монографії [5] методом представницького 
об’ємного елемента досліджено ефективні меха-
нічні характеристики односпрямованого компо-

зиційного матеріалу із транстропними порожни-
стими волокнами.

Робота [6] присвячена визначенню пружних 
механічних сталих композиційного матеріалу за 
наявності пористого перехідного шару між мате-
ріалом матриці та матеріалом волокна шляхом 
дворівневої гомогенізації спочатку включення та 
пористого шару, а потім – отриманого гомогенізо-
ваного матеріалу та матриці.

Метод представницького об’ємного елемента 
використано в роботі [4] для знаходження аналі-
тичних співвідношень для ефективних поздовж-
нього модуля пружності та коефіцієнта Пуассона 
волокнистого композиту із транстропного волокна 
й ізотропної пористої матриці.

Метою дослідження є визначення ефективного 
повздовжнього модуля зсуву для односпрямова-
ного волокнистого композиційного матеріалу із 
пористою матрицею та транстропним волокном.

Результати. Розв’язання задачі про повздовж-
ній зсув методом представницького об’єм-
ного елемента. Для знаходження аналітичного 
виразу для ефективного повздовжнього модуля 
зсуву скористаємося методом представницького 
об’ємного елемента. Виокремимо із композиту 
гексагональну комірку, що складається із цилін-
дричного волокна радіуса a та матриці, що його 
оточує. Апроксимуємо зовнішню, гексагональну, 
поверхню комірки колом радіуса b так, щоб об’єм 
матеріалу матриці не змінився (рис. 1).

Тоді, маючи на увазі, що довжина як суціль-
ного, та і порожнистого циліндра є нескінченною, 
для об’ємної частки волокна в композиті будемо 
мати:

f
a

b

a

b
� �
�
�

2

2

2

2
.�                          (1)

Задача про чистий поздовжній зсув (рис. 2) для 
циліндричного тіла із транстропними властивос-
тями розглянута в роботі [1].

За деформування такого виду значна кількість 
компонентів напружено-деформований стану 
будуть дорівнювати нулю:

� � � ��� �zz rr r� � � � 0;

� � � ��� �zz rr r� � � � 0.

Інші компоненти в загальному виді можна 
записати так:
� � � � � � � � � � � �� � � �zr zr z z zr zr z zr r r r� � � � � � � � � � � �, , , , , , , .� � �

Для нескінченної циліндричної області в моде-
люванні чистого поздовжнього зсуву до зовніш-
ньої циліндричної поверхні прикладається таке 
навантаження:

� � � �zr b cos, .� � � 0 �                           (2)
З урахуванням викладених особливостей 

деформування циліндричної області за чистого 
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поздовжнього зсуву два із трьох рівнянь рівноваги 
перетворяться на тотожні рівності, залишиться 
лише одне рівняння в напруженнях:

�
�

�
�
�

� �
� �

�
��zr z zr

r r r

1
0.

У переміщеннях це рівняння рівноваги вигля-
датиме так:

�
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�
�
�

�
�
�

�
2
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2

2

1 1
0

u

r r

u

r r

uz z z

�
.�                 (3)

Розв’язок цього рівняння відомий:

u r C r
C

r
cosz , .� �� � � ��

�
�

�
�
�1

2 �                  (4)

Скориставшись залежностями між переміщен-
нями та деформаціями, можемо визначити спів-
відношення для кутів зсуву:
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Знаючи деформації і скориставшись законом 
Гука для транстропного матеріалу, будемо мати:

� � ��z r G C
C

r
sin, ;� � � � ��

�
�

�
�
�12 1

2
2

� � �zr r G C
C

r
cos, .� � � ��

�
�

�
�
�12 1

2
2

�                  (6)

Тепер, маючі загальні співвідношення для 
чистого повздовжнього зсуву для транстропного 
тіла, розв’яжемо задачу про сумісний поздовж-
ній зсув транстропного волокна, що моделю-

ється суцільним циліндром 0 � �� �r a , та пористої 
ізотропної матриці, що моделюється порожни-
стим циліндром a r b� �� � .

Для моделювання повздовжнього зсуву пред-
ставницького об’ємного елемента необхідно 
визначити пружні характеристики пористої 
матриці, тому скористаємося варіаційним мето-
дом Хашина – Штрикмана [8] для випадкового 
просторового розподілення пор, опишемо ефек-
тивний модуль зсуву таким співвідношенням:

G p
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де K G0 0� � � �, �  – об’ємний модуль пружності та 
модуль зсуву матеріалу матриці пористого мате-
ріалу, G p� �  – модуль зсуву пористого матеріалу, 
ρ  – відносна щільність пористого матеріалу  
( p � �1 �  – пористість матеріалу).

Зі співвідношень (7) маємо вираз для ефектив-
ного модуля зсуву матриці композиційного мате-
ріалу:

G
K G G

K G G
*

* * *

* * *
�

�� �
� �

� �
3 9

27 17 20
8

0 0 0

0 0 0�
, �                 (8)

де G G p* � � � , K K0 0* � � � , G G0 0* � � � .
Тоді, з урахуванням (4) – (6) та (2), для пористої 

ізотропної матриці будемо мати:
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тут A B, �  – сталі, що визначаються із крайових 
умов.

А враховуючи (4) – (6), для транстропного 
волокна з урахуванням скінченності переміщень 
за r = 0 , матимемо:

u r Crcosz
� � � � � �, ;� � � 12                      (12)

� � � � � ��z zrCsin Ccos� �� � � � � � � � �; ;� � 13              (13)

� � � � � ��z zrG Csin G Ccos� � � �� � � � � � � � �12 12 14; ,� �        (14)
де C  – стала, що визначається із крайових умов.

Для знаходження сталих A B C, ,� �  у співвідно-
шеннях (9) – (14) скористаємося крайовою умо-
вою (2) та умовами неперервності на межі розділу 
матеріалу волокна й матеріалу матриці:

� � � �zr zr a
� � � � � � � �* , ; � 15                      (15)

u a u az z
� � � � � � � �, , .*� � � 16                    (16)

Рис. 1. Розподіл зовнішніх навантажень  
на межі кільця за поздовжнього зсуву
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Скориставшись (2), маємо:
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З урахуванням (17) і (16), отримуємо:
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Скориставшись (15), з урахуванням співвідно-
шень (17) та (18), матимемо:
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Тоді з (18) отримаємо:
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Беручи до уваги (19) і (21), запишемо основні 
співвідношення, що описують напружено-дефор-
мований стан матриці за чистого поздовжнього 
зсуву:
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Скориставшись знайденим співвідношен-
ням (20) для С, отримаємо вирази, що описують 
напружено-деформований стан волокна у пред-
ставницькій об’ємній комірці за сумісного поз-
довжнього зсуву:
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Тепер визначимо напружено-деформова-
ний стан представницького об’ємного елемента 
гомогенізованого композиційного матеріалу в 
тих самих умовах чистого поздовжнього зсуву. 
Для цього елементарну комірку представимо як 
суцільний нескінченний циліндр радіуса b, а кра-
йові умови візьмемо незмінними – у вигляді (2). 
Тоді, скориставшись загальними співвідношен-
нями (4) – (6), знайдемо напружено-деформова-
ний стан елементарної представницької комірки 
гомогенізованого композиційного матеріалу:
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Скориставшись крайовою умовою (2), знай-

демо сталу A :
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Тоді співвідношення (32) – (36) виглядатимуть так:
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Тобто в результаті розв’язання двох крайо-
вих задач про чистий поздовжній зсув визначено 
напружено-деформований стан двох представ-
ницьких об’ємних комірок – сумісного дефор-
мування для комірки з матеріалу матриці та 
матеріалу волокна й комірки з гомогенізованого 
матеріалу. Для знаходження ефективного модуля 
зсуву скористаємося, як умовою узгодження, рів-
ністю осьових переміщень у будь-якій точці зов-
нішньої межі для обох представницьких комірок:

u b u bz z, , .*� �� � � � � �                   (43)
З урахуванням рівності (43), матимемо:
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Аналіз чисельних результатів. Обчислимо 
ефективний повздовжній модуль зсуву волок-
нистого композиційного матеріалу з пористою 
матрицею за формулою (44). Проаналізуємо зміну 
його величини залежно від пористості матриці й 
об’ємного вмісту волокна в композиті. Як мате-
ріал матриці візьмемо алюміній, а як матеріал 
волокна – бор. Для матриці пористого матеріалу 
будемо мати такі механічні сталі [2]: модуль пруж-
ності E* = 70  ГПа, коефіцієнт Пуассона ν*=0,32

, для матеріалу ізотропного волокна – E = 416 5,  
ГПа, коефіцієнт Пуассона ν° =0,2 . Для об’єм-
ного модуля пружності та модуля зсуву матриці 
пористого матеріалу будемо, відповідно, мати 
K E G E0 03 1 2 2 1* * * * * *� �� �� � � �� �� �/ ; /� �� � . Для модуля 
зсуву матеріалу волокна – G G E12 2 1 � � �� �� �� �/ � �
. Результати чисельних розрахунків представлені 
на рисунку 2.
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Рис. 2. Залежність ефективного повздовжнього 
модуля зсуву G12  від пористості матриці p 

(формула (44)) та від об’ємного вмісту корда:
1 – f = 0 1, ; 2 – f = 0 2, ; 3 – f = 0 3,

Зазначимо, що збільшення об’ємного вмісту 
волокна приводить до збільшення ефективного 
повздовжнього модуля зсуву композиційного 
матеріалу, що зумовлено більш високою жорсткі-
стю матеріалу волокна. Наявність пор, навпаки, 
зменшує величину ефективного повздовжнього 
модуля зсуву, ця залежність близька до лінійної. 
Так, збільшення пористості від 0 до 0,4 зменшує 
значення модуля зсуву композиту на 10–15%. 

Висновки. За допомогою методу представниць-
кого об’ємного елемента знайдено аналітичний вираз 
для ефективного повздовжнього модуля зсуву ком-
позиційного матеріалу із пористої матриці та тран-
стропного волокна, який є функцією пружних сталих 
матеріалу матриці та матеріалу волокна, пористо-
сті матриці й об’ємної частки волокна в композиті. 
За допомогою отриманої формули проаналізовано 
вплив величини пористості матриці й об’ємної 
частки волокна на значення ефективного повздовж-
нього модуля зсуву композиційного матеріалу.
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