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Досліджено термонапружений стан у тонкій пологій призматичній 
оболонці, складеній із трьох плоских елементів, з урахуванням 
конвективного теплообміну за різної температури навколишнього 
середовища на кожній із двох лицевих поверхонь оболонки. Коефіцієнти 
тепловіддачі на лицевих поверхнях кожного із трьох елементів оболонки є 
різними. Запропонована модель опису температурного поля у призматичній 
оболонці, зумовленого різницею температур навколишнього середовища 
на лицевих поверхнях. Задачу теплопровідності для оболонки зведено до 
розв’язування системи інтегральних рівнянь з інтегральними операторами 
Вольтерри та Фредгольма другого роду для функцій, що є лінійними 
комбінаціями температурних характеристик (середня температура та 
температурний момент). За допомогою методу квадратурних формул 
побудовано числову схему розв’язування інтегральних рівнянь. Зокрема, 
квадратурні формули Сімпсона використовуються для визначення 
інтегралів, а система інтегральних рівнянь з інтегральними операторами 
Вольтерри та Фредгольма другого роду зводиться до системи лінійних 
алгебраїчних рівнянь. Функцію напружень і прогин оболонки знайдено 
за допомогою скінченних інтегральних перетворень Фур’є. На краях 
оболонка зі зламами підтримується жорсткими вертикальними 
діафрагмами. Для визначення термонапруженого стану оболонки 
прийнято, що краї, на які виходять злами, теплоізольовані, а температура 
інших торців дорівнює нулю. Наведено результати числового аналізу 
розподілу середньої температури, температурного моменту, прогину, 
моментів і зусиль за різних значень коефіцієнта тепловіддачі на верхніх 
лицевих поверхнях першого й третього елементів оболонки. Виявлено, 
що зменшення коефіцієнта тепловіддачі на крайніх елементах приводить 
до спадання середньої температури та температурного моменту оболонки 
зі зламами, згинних моментів і абсолютних величин прогину й зусиль 
зі зміщенням максимальної їх величини в бік елемента, де коефіцієнти 
тепловіддачі не змінювали.
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The problem of determining the thermostressed state in a thin shallow 
prismatic shell composed of three flat elements is considered, taking into 
account convective heat exchange at different ambient temperatures on each 
of the two face surfaces of the shell. The heat-transfer coefficients at the 
face surfaces of each of the three shell elements are assumed to be different. 
A model is proposed for describing the temperature field in the prismatic shell, 
caused by the difference in ambient temperatures on the face surfaces. The 
heat conduction boundary value problem is reduced to a system of integral 
equations with Volterra and Fredholm integral operators of the second kind 
for functions that are linear combinations of the temperature characteristics 
(the mean temperature and the temperature moment). A numerical scheme for 
solving the system of integral equations is constructed using the quadrature 
method. In particular, Simpson’s quadrature formulae are used to evaluate the 
integrals, reducing the system of integral equations with Volterra and Fredholm 
operators to a system of linear algebraic equations. The finite Fourier integral 
transforms are employed to determine the stress function and the deflection 
of the shell. The shell with folds is supported by rigid vertical diaphragms at 
its edges. The edges containing the folds of the mid-surface are assumed to 
be thermally insulated, while the temperature of the surrounding environment 
is taken as zero at the other edges. Numerical results for the distributions of 
the mean temperature, temperature moment, deflection, bending moments, and 
internal forces are presented for various values of the heat-transfer coefficients 
at the upper face surfaces of the first and third shell elements. It is revealed 
that a decrease in the heat-transfer coefficient in the outer elements leads to a 
reduction in the mean temperature, temperature moment, bending moments, 
absolute values of deflection and internal forces, and causes the location 
of their maximum values to shift toward the fold where the heat-transfer 
coefficient remains unchanged.

Key words: heat conduction, 
shell, folds, piecewise-constant 
heat transfer coefficients, 
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Вступ. Злами поверхонь тонкостінних елемен-
тів конструкцій істотно впливають на розподіл 
напружень і температури в тілі та можуть зумовити 
збільшення його загальної жорсткості. Тонкостінні 
оболонки з нерегулярними серединними поверх-
нями знайшли застосування в авіа- і ракетобуду-
ванні, залізничному транспорті, будівельній інду-
стрії, машинобудуванні й інших галузях техніки, 
тому завдання з їх дослідження є актуальними. 

Концентрацію напружень в тонкостінних еле-
ментах конструкцій з геометричними неоднорід-
ностями серединної поверхні у формі зламів про-
аналізовано у праці [1]. Тут злам змодельований 
розподіленим уздовж нього фіктивним нормаль-
ним навантаженням, пропорційним мембранному 

зусиллю. На основі рівнянь теорії пологих оболо-
нок і розвинення фіктивного навантаження в ряд 
Фур’є отримані вирази для прогину та функції 
зусиль. У праці [2] досліджено напружений стан 
оболонки, яка складена із двох півбезмежних 
пластин, спряжених під прямим кутом. Розра-
хунок зведено до задачі про сумісний плоский і 
згинний стан нескінченної пластинки з дефектом, 
що відповідає лінії спряження, при переході через 
який зусилля або переміщення мають стрибки. 
У праці [3] визначено власні частоти коливань 
коробчастих оболонок методом однорідних 
розв’язків. Методом скінченних елементів дослі-
джено власні частоти й форми коливання сталевої 
пологої оболонки зі зламами [4] та деформування, 
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стійкість і коливання пружних оболонок ступінча-
сто-змінної товщини [5]. Прогин оболонок з недо-
сконалостями типу вм’ятини досліджено у праці 
[6]. Запропоновано аналітично-чисельний під-
хід до розв’язання задач про стійкість складених 
дискретно підкріплених проміжними шпангоу-
тами тришарової оболонкової конструкції конус – 
циліндр [7] і оболонкової конструкції з різними 
знаками Гауссової кривини [8] за статичного 
комбінованого навантаження зовнішнім тиском, 
осьовими зусиллями й крутильним моментом.

Уперше апарат узагальнених функцій для 
опису зламу оболонки застосовано у праці [9], де 
кривину поверхні аналітично виражено через δ –
функцію, помножену на кут зламу. Це дало змогу 
описати напружено-деформований стан такої обо-
лонки частково виродженими диференціальними 
рівняннями. 

Перелічені вище праці стосуються дослі-
дження напружено-деформованого стану оболо-
нок зі зламами серединної поверхні за силових 
навантажень. Водночас багато складених обо-
лонкових конструкцій зі зламами в енергетиці, 
ракетно-космічній техніці, на транспорті й інших 
галузях функціонують за дії високих температур, 
які зумовлюють істотний вплив на їхній напру-
жено-деформований стан. Проте для його дослі-
дження насамперед потрібно розвинути метод 
розв’язування рівнянь теплопровідності для 
оболонок зі зламами, а далі за отриманим полем 
температури визначити термічні напруження і 
деформації. За допомогою методу узагальнених 
функцій автор запропонував математичну модель 
температурного поля і зумовленого ним термо-
напруженого стану пологої сферичної оболонки, 
складеної з дев’яти квадратних елементів [10], 
та пологої призматичної оболонки, складеної із 
двох прямокутних елементів [11], за умови, що 
коефіцієнти тепловіддачі з лицевих поверхонь 
однакові. У праці [12] цей підхід узагальнено сто-
совно термонапруженого стану двохелементної 
призматичної оболонки за різних коефіцієнтів 
тепловіддачі з лицевих поверхонь. У праці [13] 
отримано рівняння теплопровідності для тонких 
пологих оболонок зі зламами вздовж координат-
них ліній і запропоновано спосіб зведення їх до 
системи інтегральних рівнянь. У працях [14–18] 
досліджено вплив сталих і кусково-сталих кое-
фіцієнтів тепловіддачі на лицевих поверхнях на 
напружено-деформований стан пластинок і поло-
гих оболонок без зламів.

Ця стаття присвячена дослідженню темпера-
турного поля і термонапруженого стану приз-
матичної пологої оболонки, складеної із трьох 
плоских елементів, за теплового навантаження з 
різними коефіцієнтами тепловіддачі на лицевих 
поверхнях кожного з елементів. Запропоновано 

спосіб зведення крайової задачі теплопровідності 
для оболонки зі зламами до системи інтегральних 
рівнянь з інтегральними операторами Вольтерри 
та Фредгольма другого роду щодо функцій, що 
є лінійними комбінаціями інтегральних характе-
ристик температури. Використали теорію узагаль-
нених функцій і методи варіації сталої та кінцевих 
інтегральних перетворень Фур’є для розрахунку 
термопружного стану розглядуваної оболонки як 
єдиного цілого. Проаналізовано залежність тем-
ператури, прогину та згинних моментів на лініях 
зламів від зменшення коефіцієнта тепловіддачі на 
крайніх елементах верхньої лицевої поверхні обо-
лонки.

Результати. Задача теплопровідності. Роз-
глянемо тонку пологу оболонку зі сторонами r  
та d1 , яка складена із трьох плоских елементів 
(рис. 1). Коефіцієнти теплопровідності всіх еле-
ментів однакові. Уздовж прямих у точках a  та 
c  оболонка має злами. Відповідно до теорії про 
пологі оболонки кути зламів θ j  ( j =1 2, ) прийма-
ємо малими. На лицевих поверхнях z h� �  плас-
тинкових елементів відбувається конвективний 
теплообмін із середовищем температури tc±  за різ-
них коефіцієнтів тепловіддачі на кожному з них:  

Рис. 1. Розрахункова схема оболонки 
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Диференціальні характеристики середин-

ної поверхні пологої оболонки запишемо як [9]: 
k x a x c� � �� � � �� �1

2

1

21 2� � � � , де δ  – функція Дірака, k –  
кривина оболонки. Оболонка на торцях x r= 0,  
обмінюється теплом із зовнішнім середовищем 
температури tcj  та коефіцієнтами тепловіддачі bj  
відповідно, а також теплоізольована на краях y = 0  
та y d= 1 . За таких умов температура не залежить 
від координати y . Згідно з гіпотезою про ліній-
ний за товщиною призматичної оболонки розпо-
діл температури [15] стаціонарне температурне 
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поле в ній подано у вигляді t x z T x
z

h
T x,� � � � � � � �1 2 , де 

h  – півтощина оболонки, через інтегральні тем-
пературні характеристики – середню температуру 
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які визначаються із системи диференціальних рів-
нянь [13, с. 71]: 
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безрозмірна координата; x a h1 = / ; x c h2 = / ; l r h= / ; 
b hbj j� �  – безрозмірні коефіцієнти тепловіддачі 
на торцях � � 0  та � � l  відповідно; λ  – коефіцієнт 
теплопровідності.
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систему (1) та крайові умови (2) запишемо через 
функції F F1 2( ), ( )η η  у вигляді:
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Тут p d S x S x F d S x S x F1 1 1 2 1 2 1 2 2 21
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cF F  можна знайти у [13, с. 73].

Функції Fj ( )η  у правих частинах отриманих 
рівнянь (4) уважатимемо відомими. Тоді кожне із 
цих диференціальних рівнянь розв’язуємо мето-

дом варіації сталої. Урахувавши крайові умови 
(5), визначимо сталі інтегрування, підставлянням 
яких у знайдені загальні розв’язки кожного з рів-
нянь отримаємо систему інтегральних рівнянь з 
інтегральними операторами Вольтерри та Фред-
гольма другого роду для визначення невідомих 
функцій Fj �� � : 

F g
e

g

e
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b
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j j

l

j

j j
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�
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�0
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1
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l

j
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s sha l s ds

a
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�

�
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�
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� � � �� � � � �

�

�

0

0

1
� �

�

� �� � � � � � � � � � �

� � � � � � � � � �

C F x C F x

R F x R F x

j j

j j

1 1 1 2 2 1

1 1 2 2 2 2

� �

� � .

  (6)

Позначення 
С C C R R g gj j j j j j j� � � � �� � � � � � � � � �, , , , , ,1 2 2 2 0 1

через їхню громіздкість тут не наведені. Невідомі 
значення функції на лініях зламів F xj 1� � , F xj 2� �  
знаходимо із системи алгебраїчних рівнянь, яку 
отримуємо, беручи функції Fj ( )η  у рівняннях 
(5) на лініях зламу � � x j . Систему інтегральних 
рівнянь (5) розв’язуємо чисельно методом ква-
дратурних формул [19]. Тоді зі співвідношень (3) 
знаходимо середню температуру T1 �� �  і темпера-
турний момент T2 �� � , необхідні для визначення 
термонапруженого стану в оболонці.

Термонапружений стан оболонки. Для 
визначення термонапруженого стану пологої 
призматичної оболонки зі зламами на лініях � � х j  
комплексну функцію напружень �( , )� �  подамо 
через функцію напружень � � �( , )  та прогин w( , )� �  
у вигляді [15] �( , ) ( , ) ( , ) /� � � � � � �� �w i E0 . Уважаємо, 
що на торцях � � 0  і � � l  оболонка вільно оперта 
на жорсткі вертикальні діафрагми [9] та на них 
задана нульова температура, для цього у гранич-
них умовах (2) bj  спрямуємо в нескінченність та 
покладемо Tjc1 0=  і Tjc2 0= , j =1 2, . Тоді комплексна 
функція напружень �( , )� �  визначається із ключо-
вого рівняння [12, с. 203]:

d

d

d

d d

d

d
i h h iT Tk t

4

4

4

2 2

4

4
2 2 2 2

1 0 2� � � �
� � � �� �

�

�
�

�

�
� � � � � � �� �� � ,  (7)

де 
E

Eh
0 2

2
�
�

, � �2 21
3 1� �� �

h
, � �

�0
2 1

3 1
�

�
�� � , 

� � � �� � � �� �� � �
�k x x� � � � � �
�1 1 2 2

2

2 ,

за крайових умов:

за � � 0  і � � l  w = 0 ; �
�

�
2

2
0

w

�
; �
�

�
2

2
0

�
�

; �
�

�
2

2
0

�
�

;

за � � 0  і � � d  w = 0 ; �
�

�
2

2
0

w

�
; �
�

�
2

2
0

�
�

; �
�

�
2

2
0

�
�

,   (8)

де � � y h/ – безрозмірна координата, d d h= 1 / .
Для розв’язання рівняння (7) скористаємося 

формулами для перетворень Фур’є, задоволь-
нивши крайові умови (8), отримаємо:
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�1 1 1 1 2 1 1 1 2 1 2 2� � � � � � � � �� � � �� � � � �� �� � ��� � � � �T t T t T t( ) ( ) ( ) ( ) ( ) ���� �� � ��S x( )� 1

� � �� �� � �� ��� �� � �� � � �
�

�( ) ( ) ( ) ( ) ( )� � � � � � � �3 2 1 1 3 2 2 2 2 1 2T t T t S x T (( ) ,� �� �t2

�2 1 2 2 2 1 2 2 2 1 13 1 3� � � � � � � �� � � � �� � � � �� � � �� � � � �( ) ( ) ( ) ( ) ( ) (T t T t T �� �) ( )�� ��� �� � ��t S x1 1

� � �� � � � �� ��� �� � �� � � �
�

�3 33 2 2 2 3 2 1 1 2 1( ) ( ) ( ) ( ) ( )� � � � � � � �T t T t S x TT t t1 1 23( )� �� � � .
Застосовуємо до (9) обернене перетворення 

Фур’є по αm  і отримаємо:
� � � � �� � �� � � � � � � � � � � � � � � �� � � � � � � � � �, , , , , ,n n n n n nx iH x iH i1 1 2 2 1 22 ( , )� �n , (10)
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Щоб визначити �� � �x n1,�  та �� � �x n2 ,� , треба в 
рівність (9) підставити точки x1  і x2  та розв’язати 
відповідну систему рівнянь із двома невідомими. 
Розв’язками такої системи будуть вирази:

�� � � � � �x in1 1 2,� � � , �� � � � � �x in2 3 4,� � � ,   (11)
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� � � � � � �1 0 2 1 1 1 2 2 1 2 2 1� � � � � � � � � � � � �� � � � �x x x x xn n n n n, , , , , ,

� � � � � � � �2 1 1 0 2 1 2 2 0 2 2 2 1� � � � � � � � � � � � �� � � � �x x x x xn n n n n, , , , , ,

� � � � � � �3 0 2 2 1 1 1 2 1 1 1 2� � � � � � � � � � � � �� � �x H x x x H xn n n n n, , , , , ,

� � � � � � � �4 1 2 0 1 1 2 2 0 1 2 2 1� � � � � � � � � � � � �� � �x H x x H x xn n n n n, , , , , ,

� � � � �1 1 1 2 2 1 2 2 11� � � � � � � � � � �� � � �x x x xn n n n, , , , ,

� � �2 1 1 2 2� � � � � �� �x xn n, , .
Підставимо вирази (11) у формулу (10) і отри-

маємо
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тоді прогин і функція напружень матимуть вигляд:
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Зусилля та моменти з урахуванням (12) визна-
чаємо за формулами:
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Аналіз числових результатів. Розглядали 
тонку призматичну оболонку з безрозмірними роз-
мірами l =1 , d =1 , x2 0 66= , x1 0 33= ,  та кутами зламу 
� �1 2 0 1� � , , коли температура середовища дорів-
нює нулю на нижній лицевій поверхні оболонки 
z h� �  і на торцях � � 0  та � �1  ( t t t Cc c c

� � � �1 2 0 )  
та дорівнює одному градусу на верхній поверхні 
z h� �  ( t Cc

� �1 ). Уважали, що коефіцієнти тепло-
віддачі на нижніх поверхнях z h� �  трьох елемен-
тів однакові й рівні � � �1 2 3 50� � �� � � ; на верхній 
лицевій поверхні z h=  другого елемента обо-
лонки коефіцієнт тепловіддачі рівний �2 100� � . 
Розглядали різні значення коефіцієнтів тепловід-
дачі на верхній лицевій поверхні першого еле-
мента: ( �1 100� � ; �1 95� � ; �1 90� � ) і різні значення 
коефіцієнтів тепловіддачі на верхній лицевій 
поверхні третього елемента: ( �3 100� � ; �3 95� � ; 
�3 100� � ). На рис. 2–8 криві ілюструють розподіли 
температурних характеристик, прогину, момен-
тів, зусиль вздовж лінії � � 0 5, . Суцільна крива 
відповідає однаковим коефіцієнтам тепловіддачі 
на верхніх і нижніх лицевих поверхнях, ; штри-
хова крива – зменшенню тепловіддачі на верхніх 
поверхнях першого й третього елементів на п’ять 
відсотків ( � �1 3 95� �� � ); штрихпунктирна крива – 
зменшенню тепловіддачі на верхній поверхні пер-
шого елемента на десять відсотків ( �1 90� � ).

 

Рис. 3. Розподіл температурного моменту 
 за зміни коевіцієнтів тепловіддачі 

Рис. 2. Розподіл середньої температури  за 
зміни коефіцієнтів тепловіддачі 
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За однакових коефіцієнтів тепловіддачі з 
верхньої поверхні трьох елементів оболонки 
� � �1 2 3 100� � �� � �  (суцільна крива) максимальне 
значення середньої температури T1  досягається 
посередині другого елемента, а температурний 
момент T2  досягає локальних мінімумів на лініях 
зламу. Коли коефіцієнти тепловіддачі з верхніх 
поверхонь першого й третього елементів обо-
лонки стають на п’ять відсотків меншими (штри-
хова крива), то T1  і T2  зменшуються. Коли кое-
фіцієнт тепловіддачі першого елемента верхньої 
лицевої поверхні оболонки стає на десять від-
сотків меншим, середня температура й темпера-
турний момент дальше зменшуються, їхні макси-
муми зміщуються в напрямку третього елемента 
оболонки.

На рисунку 4 спостерігається зменшення 
абсолютної величини нормованого прогину 
w w t ht c

* ( )� �105 �  оболонки (суцільна та штрихова 
криві) зі зменшенням коефіцієнтів тепловіддачі на 
верхній поверхні її першого й третього елементів 
на п’ять одиниць. Тоді прогин досягає локальних 
мінімумів на лініях зламів і локальних максиму-
мів на кожному із трьох елементів оболонки та є 
симетричним щодо її середини � � 0 5, . Зі зменшен-
ням коефіцієнта тепловіддачі верхньої поверхні 
першого елемента до �1 90� �  (штрихпунктирна 
крива) абсолютна величина прогину зменшу-
ється і її локальний мінімум на першому елементі 
вдвічі менший, ніж на третьому. Якщо порівняти 
прогин (суцільна крива) на рисунку 4 й анало-
гічні прогини в роботі [11] для двохелементної 
призматичної оболонки за однакових коефіцієн-
тів тепловіддачі з лицевих поверхонь та різних 
кутів зламу, бачимо, що якісна поведінка прогину 
на цих рисунках подібна. На лінії зламу прогин 
зменшується. 

Рис. 4. Розподіл нормованого прогину 
 за зміни коефіцієнтів тепловіддачі 

Нормований згинальний момент 
M M h t Dt c1

3
1 210* ( )� ��  (рис. 5) та величина нормо-

ваного зусилля N N h t Et c1
2

1 010* � � ���  (рис. 7), коли 
коефіцієнти тепловіддачі оболонки на кожній з 
лицевих поверхонь однакові (суцільна крива), 
спадають, досягаючи мінімуму на лінії � � 0 5, . Зі 
зменшенням коефіцієнтів тепловіддачі на верх-
ніх лицевих поверхнях першого й третього еле-
ментів оболонки вони збільшуються (штрихова 
й штрихпунктирна криві). Розподіл нормованого 
моменту M M h D2

3
2 210* =  (рис. 6) та нормованого 

зусилля N N h t Et c2
2

2
2

010* � � ���  (рис. 8) якісно ана-
логічний до розподілу моменту M1

*  і зусилля N1
* .  

Максимальних значень моменти досягають на 
торцях.
 

Рис. 7. Розподіл нормованого зусилля 
 за зміни коефіцієнтів тепловіддачі 

Рис. 8. Розподіл нормованого зусилля 
 за зміни коефіцієнтів тепловіддачі 

Висновки. Дослідження напружено-дефор-
мованого стану оболонок зі зламами у працях 
[1–9] проведено для силового навантаження. 
Для випадку рівності коефіцієнтів тепловіддачі 
з лицевих поверхонь досліджено напружено-де-
формований стан складеної пологої оболонки 
сферичної форми та призматичної оболонки, 
складеної із двох однакових елементів, у пра-
цях [10; 11]. За різних коефіцієнтів тепловіддачі 
з лицевих поверхонь напружено- деформований 
стан призматичної оболонки, складеної із двох 
елементів, проведено у праці [12]. У даній роботі 
вивчено ефект впливу зламів на термонапружений 
стан у тонкій пологій складеній із трьох плоских 
елементів призматичній оболонці за конвектив-
ного теплообміну з навколишнім середовищем на 
лицевих поверхнях. На кожній із шести лицевих 
поверхонь оболонки різні коефіцієнти тепловід-
дачі. Задачу теплопровідності для оболонки зі 
зламами зведено до системи інтегральних рівнянь 

 

Рис. 5. Розподіл нормованого моменту 
 за зміни коефіцієнтів тепловіддачі 

Рис. 6. Розподіл нормованого моменту 
 за зміни коефіцієнтів тепловіддачі 
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з інтегральними операторами Вольтерри та Фред-
гольма другого роду, із застосуванням методу 
варіації сталої. Розв’язок задачі термонапруж-
ності знайдено за допомогою комплексної функ-
ції напружень, яку подано через функцію напру-
жень та прогин. На торцях оболонка зі зламами 
вільно оперта на жорсткі вертикальні діафрагми. 
Торці, на які виходять злами серединної поверхні, 
теплоізольовані, а на інших задана нульова темпе-
ратура. Функції напружень та прогину знайдено 
завдяки скінченним інтегральним перетворенням 
Фур’є. Наведено результати числового аналізу 
розподілу середньої температури, температур-

ного моменту, прогину, моментів і зусиль за різ-
них значень коефіцієнта тепловіддачі на верхніх 
лицевих поверхнях першого й третього елементів 
оболонки. За зменшення коефіцієнтів тепловід-
дачі на крайніх елементах середня температура, 
температурний момент, згинні моменти й абсо-
лютні величини прогину й зусиль спадають зі змі-
щенням максимальної їх величини в бік елемента, 
де коефіцієнти тепловіддачі не змінювали. Варто 
зауважити, що вздовж зламів поведінка розподілу 
температурних характеристик, прогину, зусиль 
та моментів у працях [10–12] та даній роботі має 
якісно аналогічний характер.
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