
36

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

РОЗДІЛ II. ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

УДК 004.02
DOI https://doi.org/10.26661/2786-6254-2025-2-05

ОГЛЯД ПІДХОДІВ ДО ОРГАНІЗАЦІЇ БІЗНЕС-ЛОГІКИ 
В ПОБУДОВІ МІКРОСЕРВІСНИХ СИСТЕМ

Бейрак Д. Я.
аспірант кафедри інженерії програмного забезпечення
Державний університет «Житомирська політехніка»

вул. Чуднівська, 103, Житомир, Україна
orcid.org/0009-0006-5089-3603

dm.beirak@gmail.com

Вакалюк Т. А.
доктор педагогічних наук, професор, 

завідувач кафедри інженерії програмного забезпечення
Державний університет «Житомирська політехніка»

вул. Чуднівська, 103, Житомир, Україна
orcid.org/0000-0001-6825-4697

tetianavakaliuk@gmail.com

Натепер питання побудови архітектури мікросервісів стає все більш 
актуальним, оскільки даний тип архітектури дозволяє проєктувати 
системи з низькою зв’язністю, які мають низку переваг перед монолітами: 
можливість горизонтального масштабування, краще розділення системи 
на складові частини (сервіси), кожен окремий з яких простіше розвивати 
та підтримувати, можливість більш ефективного використання ресурсів 
та інші. Зазначені вище та низка інших причин приводять до зростання 
популярності такого типу архітектури в індустрії, що позначається на 
виборі архітекторів та інженерів програмного забезпечення стосовно 
впровадження мікросервісної архітектури як у побудові нових систем, так 
і як вектора розвитку успадкованих монолітних систем, які все частіше 
переписуються на мікросервіси. Проблематика, що стосується питань 
проєктування мікросервісних систем, має велику кількість різноманітних 
аспектів, одним із них є вибір організації бізнес-логіки разом із низкою 
супутніх патернів, технологій та інструментів. Вплив такого вибору 
неможливо переоцінити: бізнес-логіка є реалізацією предметної області, 
у якій працює бізнес, тому вибір відповідних патернів і підходів до її 
організації має прямий вплив не тільки на якість реалізації системи, 
а й на вартість її розширення та підтримки в майбутньому. У статті 
розглядаються методи, принципи й інструменти, призначені для організації 
бізнес-логіки в мікросервісних системах, розглядаються патерни, 
призначені для використання в умовах простих і складних доменів, 
підходи до організації роботи з командами та запитами в системах, що 
використовують події. Значна увага приділяється парадигмі предметно 
орієнтованого проєктування, як найперспективнішій у застосуванні під 
час розроблення систем зі складною предметною областю. 

Ключові слова: мікросервісна 
архітектура, бізнес-логіка, 
предметно орієнтоване 
проєктування, DDD, event 
sourcing, CQRS, патерни.



37

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

APPROACHES TO BUSINESS LOGIC IMPLEMENTATION IN MICROSERVICE 
SYSTEMS IN THE SCIENTIFIC LITERATURE

Beirak D. Ya.
Postgraduate Student at the Department of Software Engineering

Zhytomyr Polytechnic State University
Chudnivska str., 103, Zhytomyr, Ukraine

orcid.org/0009-0006-5089-3603
dm.beirak@gmail.com

Vakaliuk T. A.
Doctor of Pedagogical Sciences, Professor, 

Head of the Department of Software Engineering
Zhytomyr Polytechnic State University

Chudnivska str., 103, Zhytomyr, Ukraine
orcid.org/0000-0001-6825-4697

tetianavakaliuk@gmail.com

Currently, the issue of building a microservice architecture is becoming 
increasingly relevant, as this type of architecture allows you to design systems 
with low coupling, which have a number of advantages over monoliths: the 
possibility of horizontal scaling, better division of the system into components 
(services), each of which is easier to develop and maintain, the possibility 
of more efficient use of resources, etc. The above-mentioned and a number 
of other reasons lead to the growing popularity of this type of architecture 
in the industry, which affects the choice of software architects and engineers 
regarding the implementation of microservice architecture both when 
designing new systems and as a vector of development for legacy monolithic 
systems, which are increasingly being migrated to microservices. The 
issues related to the design of microservice systems include a large number 
of different aspects, and the choice of business logic implementation is one 
of them, along with a number of related patterns, technologies, and tools. 
The impact of such a choice cannot be overestimated: business logic is the 
implementation of the business domain in code, and therefore the choice of 
appropriate patterns and approaches has a direct impact not only on the quality 
of the system implementation, but also on the cost of its expansion and support 
in the future. This paper examines methods, principles, and tools designed to 
organize business logic in microservice systems, considers patterns designed 
to be used in simple and complex domains, approaches to organizing work 
with commands and requests in event-driven systems. Considerable attention 
is paid to the paradigm of domain-driven design, as the most promising in 
application when developing systems within complex domains. 

Key words: microservice 
architecture, business logic, 
domain-driven design, DDD, 
event sourcing, CQRS, patterns.

Вступ. Натепер усе більше нових проєктів 
створюється на основі мікросервісної архітек-
тури, а також усе більше успадкованих сис-
тем переводяться на даний тип архітектури. 
Велике значення має питання організації бізнес- 
логіки, тобто вибору патернів і підходів описання 
предметної області у вихідному коді. Від даного 
вибору залежить не тільки якість архітектури сис-
теми, а також вартість її розширення та підтримки 
в майбутньому, якість комунікації розробників і 
менеджменту. Дані чинники роблять актуальними 

дослідження наявних патернів і підходів реаліза-
ції бізнес-логіки в контексті побудови мікросер-
вісної архітектури. Огляд літератури. Проблеми, 
пов’язані з організацією бізнес-логіки в системах 
з мікросервісною архітектурою, у науковій літе-
ратурі та публікаціях розглядали різні автори та 
вчені. Зокрема, загальні проблеми та патерни 
описували Кріс Річардсон (Chris Richardson), Сем 
Ньюман (Sam Newman) і Мартін Фаулер (Martin 
Fowler). Питання організації бізнес-логіки з вико-
ристанням предметно орієнтованого проєкту-



38

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

вання присутні у працях Еріка Еванса (Eric Evans) 
та Влада Хононова (Vlad Khononov). Застосу-
вання даного підходу у функціональній парадигмі 
висвітлювали Скотт Влашин (Scott Wlaschin) і 
Уберто Барбіні (Uberto Barbini). Також питання, 
пов’язані з організацією бізнес-логіки, розгля-
дали Штефан Капферер (Stefan Kapferer), Олаф 
Циммерманн (Olaf Zimmermann), Владімір Хорі-
ков (Vladimir Khorikov), Джерфі Палермо (Jeffrey 
Palermo), Дерек Колі (Derek Colley), Клейр Стей-
нер (Clare Stanier), Штефан Лізер (Stefan Lieser), 
Стенлі Ліма (Stanley Lima), Жаймі Корія (Jaime 
Correia), Філіпі Араужю (Filipe Araujo), Жорже 
Кардозо (Jorge Cardoso), Ішмаель Мота (Ismael 
Mota), Міхіел Оверейм (Michiel Overeem), Мар-
тен Шпур (Marten Spoor), Слінге Янсен (Slinger 
Jansen), Шак Брінкемпер (Sjaak Brinkkemper), 
Озан Оскан (Ozan Özkan), Ондер Бабур (Önder 
Babur), Марк ван ден Бранд (Mark van den Brand), 
Метаяс Верейс (Mathias Verraes), Ребека Верфс-
Брок (Rebecca Wirfs-Brock), Хуля Вулар (Hulya 
Vural), Мурат Коюнджу (Murat Koyuncu) та інші.

Метою статті є детальний аналіз підходів і 
патернів організації бізнес-логіки в контексті 
побудови мікросервісної архітектури. 

Результати. Розроблення бізнес-логіки в сис-
темі з мікросервісною архітектурою ускладнене 
тим, що вона є розподіленою між багатьма серві-
сами. Кріс Річардсон (Chris Richardson) зазначає 
необхідність подолання двох викликів, пов’яза-
них з такого типу розробленням: неможливість 
прямого виклику коду, що міститься в іншому 
сервісі, та транзакційні обмеження, які накладає 
розподілена природа мікросервісної архітектури 
[1]. Перший виклик також може впливати на необ-
хідність вирішення проблеми створення розподі-
леної моделі й ускладнювати процес тестування 
[2]. Другий виклик обмежує можливість застосу-
вання ACID-транзакцій лише в рамках кожного 
окремо взятого сервісу, унеможливлює такий тип 
транзакційності між ними [1]. 

Дані обмеження впливають на підхід до орга-
нізації бізнес-логіки та вибору архітектурного 
стилю сервісу. Традиційна для монолітних сис-
тем шарова архітектура (layered architecture) не 
враховує взаємодії системи з кількома сховищами 
даних та іншими системами, а також за її викори-
стання часто виникає залежність шару бізнес-ло-
гіки від шару доступу до даних (хоча зворотне 
спрямування даної залежності можливе) [1, 3]. 
Можливою альтернативою шаровій архітектурі є 
гексагональна (також відома під назвою «порти 
й адаптери»), а також її варіації: onion-архітек-
тура та «чиста» архітектура [1, 4]. У своїй основі 
кожна з них має принцип інверсії залежностей, 
що насамперед диктує залежність коду доступу 
до даних від ядра сервісу – бізнес-логіки, а також 

передбачає винесення іншого інфраструктурного 
коду та коду інтерфейсу користувача на перифе-
рію застосунку [4; 5]. 

Сервіс, побудований із застосуванням гексаго-
нальної архітектури, має вхідні і вихідні порти, а 
також вхідні і вихідні адаптери. Порти використо-
вуються для взаємодії бізнес-логіки із зовніш-
німи частинами застосунку: наприклад, вхідний 
порт може являти собою публічні методи для 
доступу до функціональності бізнес-логіки, що 
в об’єктно орієнтованих мовах програмування 
зазвичай реалізується через відповідний інтер-
фейс, а вихідний порт може являти собою інтер-
фейс репозиторія – колекцію операцій доступу 
до даних. Адаптери розташовуються на перифе-
рії сервісу та використовуються для взаємодії із 
зовнішніми сервісами та частинами системи. Так, 
вхідні адаптери приймають запити й обробляють 
їх шляхом виклику відповідних вхідних портів. 
Прикладом вхідного адаптера може слугувати 
контролер з кінцевими точками REST API (REST 
API endpoints) або клієнт брокера повідомлень 
(message broker client). Вихідні адаптери викли-
каються вихідним портом (або реалізовують його, 
якщо він є інтерфейсом), та викликають зовніш-
ній сервіс або іншу частину системи. Прикладами 
вихідних портів можуть бути класи, що реалізу-
ють операції доступу до даних, публікують події 
або проксують зовнішні виклики [1]. 

У класичній роботі Мартіна Фаулера [6] роз-
глянуто три можливі патерни організації біз-
нес-логіки: сценарій транзакції (transaction script), 
доменну модель (domain model) та табличний 
модуль (table module). 

У мікросервісній архітектурі, у його початко-
вому вигляді, застосовується лише сценарій тран-
закції. Суть цього патерну полягає в організації 
бізнес-логіки у формі колекції процедур (методів, 
функцій), кожна з яких містить код для обробки 
однієї бізнес-транзакції (запиту, операції). Стан 
системи водночас зберігається окремо. Даний 
підхід є великою мірою процедурним, тому підхо-
дить лише для проєктування сервісів із простою 
бізнес-логікою [1, 6]. 

Коли ж бізнес-логіка все ще залишається про-
стою, але дані системи є досить складними, щоб 
ускладнити використання сценарію транзак-
цій, можна застосувати патерн активного запису 
(active record). Він дозволяє абстрагувати рядок 
у таблиці, інкапсулює до нього доступ за допо-
могою CRUD-операцій (операції створення, 
читання, оновлення, видалення), тим самим спро-
щує відображення об’єкта в оперативній пам’яті 
на схему бази даних [6, 7]. В об’єкти, що реалі-
зовані як активний запис, також можна помістити 
бізнес-логіку, проте її відсутність перетворює їх 
на анемічні доменні моделі (anemic domain model), 



39

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

що є антипатерном для систем із крупними доме-
нами [7, 8]. 

За необхідності імплементації більш складної 
бізнес-логіки, у монолітних системах, написаних 
у стилі об’єктно орієнтованого програмування 
(далі – ООП), можливе застосування доменної 
моделі [6], проте в разі мікросервісної архітектури 
більше підходить предметно орієнтоване проєек-
тування (domain-driven design, DDD) [1], викори-
стання якого також можливе у програмуванні у 
функціональній та інших парадигмах [9, 10]. 

Складники DDD зосереджені навколо побу-
дови моделей предметної області. Патерни, що 
застосовуються під час побудови застосунків з 
використанням DDD, поділяються на стратегічні 
і тактичні [7]. 

До стратегічних відносять такі патерни, як 
піддомен (subdomain), єдина мова (ubiquitous 
language), обмежений контекст (bounded context) 
і контекстна карта (context map). Розглянемо їх 
детальніше.

Піддомен – складник предметної області, біз-
нес-домену. Виділяють три типи піддоменів: 
ключові піддомени (core subdomains), які від-
різняють бізнес компанії від інших і надають 
їй конкурентну перевагу; загальні піддомени 
(generic subdomains) – складні в імплементації, 
але однакові в різних бізнесах активності, які не 
надають компанії конкурентної переваги, але є 
невід’ємним складником продукту (наприклад, 
системи аутентифікації та авторизації, прийому 
платежів); підтримувальні піддомени (supporting 
subdomains) – нескладні в імплементації піддо-
мени, які не надають бізнесу конкурентну пере-
вагу (рішення, що базуються на ETL- (extract, 
transform, load – витяг, перетворення, заванта-
ження) або CRUD-операціях) [7]. 

Єдина мова – корпоративна термінологія, що 
описує всі поняття бізнес-домену, якою послуго-
вуються всі працівники та стейкхолдери. Має бути 
точною та консистентною. У рамках обмеженого 
контексту кожне поняття повинно мати лише одне 
значення; синонімічні терміни не допускаються. 
Єдина мова має бути сформована в термінах біз-
несу та відповідати ментальній моделі доменних 
експертів. Наповнення єдиної мови має покривати 
лише ті аспекти предметної області, що вико-
ристовуються в комунікації, розробленні та тран-
сляції ідей; аспекти домену, що не використову-
ються в бізнес-контексті, не включаються в єдину 
мову, хоча можуть її розширювати, за потреби, 
у майбутньому. Важливим нюансом є підтримка 
єдиної мови всіма учасниками. Інструментами 
підтримки можливе використання глосарія, тестів 
мовою Gherkin, спеціалізованих аналізаторів коду 
тощо [7]. У більш широкому розумінні, можлива 
інтеграція DDD з підходом керованої поведінко-

вої розробки (behavior-driven development, BDD). 
Даний підхід передбачає використання специфі-
кації системи, що находить від стейкхолдерів у 
форматі історій користувачів (user stories), як єди-
ної мови [11]. 

Обмежений контекст – окремо виділений кон-
текст доменної моделі на основі тлумачень понять 
єдиної мови, що конфліктують. Консистентність 
єдиної мови та кількість виділених обмежених 
контекстів мають протилежну залежність: що кон-
систентніше єдина мова, то менше потрібно обме-
жених контекстів. Обмежені контексти застосову-
ються коли необхідно мати кілька моделей того 
самого поняття або концепції. Інакше кажучи, 
обмежений контекст визначає межі застосування 
єдиної мови, що описує частину предметної 
області в застосуванні до вирішення конкретних 
проблем. 

На відміну від піддоменів, які виділяються із 
предметної області на основі стратегії ведення 
бізнесу, обмежені контексти будуються як архі-
тектурні рішення на основі вибору границь моде-
лей. У застосуванні до мікросервісної архітектури 
кожен обмежений контекст має бути реалізований 
як окремий сервіс; отже, обмежений контекст 
може містити один або більше піддоменів. З пози-
ції ownership’у (відповідальності команди за роз-
роблення частини функціоналу системи) один 
обмежений контекст має бути призначений одній і 
тільки одній команді, хоча команда може володіти 
кількома обмеженими контекстами одночасно [7]. 

У проєктуванні обмежених контекстів важливо 
також ураховувати частоту зміни пов’язаних одна 
з одною концепцій, що може слугувати приво-
дом включення їх у єдиний обмежений контекст 
у деяких складних випадках моделювання пред-
метної області – наприклад, якщо один піддомен 
потребує використання декількох обмежених  
контекстів [12]. 

Знаходження оптимальних точок розділення 
предметної області на обмежені контексти може 
бути також виконане за допомогою розрахунків 
таких показників, як аферентна зв’язність (afferent 
coupling), еферентна зв’язність (efferent coupling) 
і пов’язність (cohesion), значення яких сприяють 
знаходженню варіантів з найнижчою зв’язністю 
та найбільш високою пов’язністю [13]. 

У проєктуванні в об’єктно орієнтованій пара-
дигмі використання доменних подій усередині 
обмеженого контексту є стандартною практикою, 
проте у функціональній такий підхід не віта-
ється через те, що він створює додаткові прихо-
вані залежності. Натомість внутрішнє виконання 
послідовних дій (так званий workflow) будується за 
допомогою композиції. Особливістю зовнішнього 
workflow є те, що він приймає на вхід команду, а 
його виходом є множина подій, що є точками відо-



40

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

кремлення такого workflow від зовнішнього світу. 
Відповідно, вхідні команди мають валідуватися 
на предмет задоволення внутрішніх умов обмеже-
ного контексту, а вихідні події перевірятися сто-
совно того, чи не витікають із даного обмеженого 
контексту приватні дані, створюючи зайву зв’яз-
ність та проблеми з безпекою [9].

Контекстна карта – діаграма, яка зображує 
обмежені контексти системи в розрізі їхньої інте-
грації одне з одним. Типи інтеграції описуються 
відповідними патернами та поділяються на три 
групи, залежно від способу взаємодії між коман-
дами розробників, як-от: кооперація, споживач – 
постачальник, окремі шляхи. До патернів коопе-
рації належать партнерство (partnership) і спільне 
ядро (shared kernel). У разі партнерства координа-
ція змін є двосторонньою: одна команда повідом-
ляє іншу про зміни у своєму API, до яких друга 
адаптується. Застосування даного патерну перед-
бачає високий рівень комунікації між командами 
й може не підходити в разі географічно розподі-
лених команд. 

Патерн спільне ядро передбачає винесення 
спільних для різних обмежених контекстів моде-
лей у єдине загальне місце – вихідні файли коду 
або бібліотеку. Даний патерн вносить сильну 
залежність між обмеженими контекстами, до яких 
його застосовано, і має використовуватися лише 
тоді, коли ціна дублювання коду є вищою за ціну 
координації змін у спільній кодовій базі. Тип інте-
грації споживач – постачальник порушує баланс 
між командами в сенсі диктування однією з них 
формату контракту та передбачає використання 
трьох патернів, як-от: конформіст (conformist), 
запобіжний шар (anti-corruption layer) і сервіс з 
відкритим протоколом (open-host service). Патерн 
конформіст передбачає безумовне прийняття спо-
живачем моделі обмеженого контексту постачаль-
ника. Його застосування виникає тоді, коли контр-
акт постачальника є індустріальним стандартом 
або просто добре підходить для потреб спожи-
вача. Патерн запобіжний шар дозволяє спожи-
вачу транслювати моделі постачальника у більш 
зручний формат контракту. Його використання 
виправдане, коли безкомпромісне прийняття сто-
ронньої моделі небажане або неможливе: обмеже-
ний контекст споживача може бути ключовим під-
доменом, який не варто піддавати зовнішньому 
впливу, модель постачальника може бути незруч-
ною або часто змінюватися тощо. 

Патерн сервіс з відкритим протоколом, 
навпаки, передбачає пристосування постачаль-
ника до потреб споживачів: для кожного з них 
створюється окремий публічний протокол, орі-
єнтований на потреби споживача. Застосування 
даного патерну дозволяє постачальнику гнучкіше 
розвивати реалізацію власного функціоналу без 

зайвого впливу на обмежені контексти спожива-
чів, а також дає можливість впроваджувати більш 
ліберальне версіонування власного API. 

Останній тип інтеграції є водночас одноймен-
ним патерном – окремі шляхи (separate ways). 
Він застосовується тоді, коли жодна колабора-
ція між командами неможлива або неефективна, 
тому простіше дублювати функціональність у 
різних обмежених контекстах. Застосування 
цього патерну необхідно уникати за інтеграції 
ключових піддоменів [7]. Оскільки контекстна 
карта відображає не лише суто технічну інфор-
мацію про архітектуру застосунку, а й зв’язки 
між командами та способи їхньої взаємодії, іноді 
можна вдаватися до зворотного маневру Кон-
вея (inverse Conway maneuver), щоб забезпечити 
узгодженість архітектури зі структурою компанії 
[9]. Контекстна карта також відіграє значну роль 
у проєктуванні та прототипуванні системи. Цей 
процес може бути виконаний за допомогою спе-
ціалізованих інструментів, як-от Context Mapper. 
Даний інструмент дозволяє використовувати спе-
ціальну DSL-мову Context Mapper DSL (CML), за 
допомогою якої описуються піддомени, обмежені 
контексти, складається контекстна карта, а також 
описуються історії користувачів і сценарії вико-
ристання. Фактично, CML дозволяє описати всю 
стратегічну частину DDD [14].

До тактичних патернів відносять сутність (entity), 
об’єкт-значення (value object), агрегат (aggregate), 
фабрику (factory), репозиторій (repository) і сервіс 
(service). Розглянемо їх детальніше.

Сутність (Entity) – об’єкт предметної області, 
який має властиву йому неперервну в часі індиві-
дуальність існування (ідентичність), яка зберіга-
ється в нього навіть якщо його неідентифікуючі 
атрибути зміняться [9, 15]. Таким чином, дві сут-
ності, які мають однакові атрибути, але різні іден-
тифікатори, є різними сутностями [1]. Ідентифіку-
ючий атрибут однозначним чином відрізняє одну 
сутність від іншої [15]. Прикладами сутностей є 
користувач, замовлення, продукт, рахунок-фак-
тура, банківська транзакція [9, 15]. Сутності вико-
ристовуються лише як складники агрегатів. 

Об’єкт-значення (Value object) – об’єкт пред-
метної області, який не має власної ідентичності 
(індивідуального існування), а є набором окремих 
полів і повністю ними визначається. Однакових 
значень цих атрибутів у двох об’єктах-значеннях 
досить для того, щоб уважати їх повністю взає-
мозамінними [1, 15]. З погляду функціональної 
парадигми об’єкти-значення мають бути незмін-
ними (immutable) [9]. Атрибути, що утворюють 
об’єкт-значення, мають бути єдиним концепту-
альним цілим. Прикладами об’єктів-значень є 
колір, літера, назва, адреса, локація, дата, об’єкт 
грошей [9, 15]. 



41

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

Агрегат (Aggregate) – сукупність взаємопов’я-
заних об’єктів, що створюють єдине ціле. Склада-
ється з кореневого об’єкта (сутності) і одного чи 
багатьох інших об’єктів (сутностей і об’єктів-зна-
чень) [1]. Кожен агрегат має межу, яка визначає 
об’єкти, з яких складається агрегат. 

Кореневий об’єкт – єдиний складник агрегату, 
що містить унікальний ідентифікатор, на який і 
тільки на який можуть посилатися всі зовнішні 
об’єкти (агрегати). Також він відповідає за пере-
вірку та дотримання інваріантів (бізнес-правил 
сутностей предметної області) та внутрішньої 
консистентності агрегату. Об’єкти, розташовані 
всередині агрегату, можуть посилатися один на 
одного без обмежень. Посилання на некореневі 
сутності можуть бути надані іншим об’єктам лише 
на час виконання якоїсь однієї операції; некоре-
неві об’єкти можуть мати лише локальну ідентич-
ність, тобто бути унікальними лише в межах агре-
гату. Кореневий об’єкт також може передавати 
зовнішнім клієнтам копії об’єктів-значень, які 
вже не матимуть зв’язку з агрегатом. Лише коре-
неві об’єкти можуть бути отримані через запити в 
базу даних – інші об’єкти, що утворюють агрегат, 
мають отримуватися лише через зв’язок з корене-
вим об’єктом [1, 15]. 

З погляду транзакційності даних агрегати 
мають використовуватися як атомарні одиниці. 
Одна транзакція може створювати або оновлювати 
лише один агрегат, що дає змогу гарантувати, що 
транзакція виконуватиметься в межах одного сер-
вісу [1, 9]. Агрегати використовуються для моде-
лювання бізнес-об’єктів предметної області [1].  
Зазвичай їх варто робити якомога меншими та 
включати в них лише ті об’єкти, які мають бути у 
строгій консистентності [7]. Прикладом агрегату 
може бути замовлення, що містить позиції, які 
самі собою є окремими об’єктами, але водночас 
замовлення розглядається саме як єдине ціле [16].

Фабрика (Factory) – об’єкт або метод, що реа-
лізує процес створення або відновлення складних 
об’єктів і агрегатів. Для проєктування фабрик 
можуть використовуватися як дизайн-патерни 
«банди чотирьох» (фабричний метод (factory 
method), абстрактна фабрика (abstract factory), 
будівельник (builder)), так і аналогічні засоби в 
інших парадигмах програмування [1, 15].

Репозиторій (Repository) – об’єкт, що реалізує 
механізм доступу до об’єктів, що зберігаються в 
базі даних [1].

Сервіс (Service) – об’єкт, що не має стану та 
реалізує логіку, яку не можна віднести ані до сут-
ності, ані до об’єкта-значення. Дозволяє також 
координувати роботу декількох агрегатів [1, 7].

Незважаючи на те, що DDD дозволяє спроєкту-
вати систему максимально близькою до природи 
предметної області, цей підхід також не позбав-

лений деяких проблемних аспектів. Один із них – 
так звана трилема вибору між чистотою доменної 
моделі (код бізнес-логіки не повинен мати залеж-
ностей поза власним процесом виконання та, 
відповідно, мати посилання лише на примітивні 
типи й інші доменні об’єкти), її повнотою (код, 
що стосується дотримання бізнес-логіки, пови-
нен бути у відповідному шарі системи та не бути 
фрагментованим) та продуктивністю. Ця трилема 
виникає в ситуації, коли частина бізнес-логіки 
не може водночас бути складником агрегату та 
не порушувати його чистоти (наприклад, через 
необхідність запиту в репозиторій). Перене-
сення цієї частини коду в інший шар (наприклад, 
у контролер) призводить до фрагментованості, 
а вичитування всього масиву даних і передача 
його в агрегат з метою виконання фільтрації в 
ньому (замість виконання цієї роботи запитом до 
бази даних) призводять до зниження продуктив-
ності. У такому разі рекомендується компромісне 
рішення – перенесення позапроцесового коду 
в контролер, що хоч і призведе до фрагментації 
бізнес-логіки, але буде найменшим компромісом 
порівняно з іншими варіантами [17]. 

Наступний виклик, який може виникнути під 
час застосування практик DDD, полягає в тому, 
що цей підхід має високу складність для розроб-
ників, не знайомих з його принципами й особли-
востями. Це спричиняє додаткові матеріальні та 
когнітивні витрати, особливо за переходу на дану 
парадигму [18]. 

У мікросервісній архітектурі, зокрема за вико-
ристання DDD, широко застосовується патерн 
доменна подія (domain event). Доменна подія – це 
об’єкт, що продукується агрегатом, коли з ним від-
бувається щось важливе: створення, зміна стану 
тощо, і який може прийняти й обробити будь-яка 
зацікавлена сторона. В об’єктно орієнтованому 
програмуванні доменні події являють собою класи, 
а у функціональній парадигмі для цього можуть 
використовуватися, наприклад, визначення типів 
і моноїди [1, 9, 19]. Назви доменних подій мають 
бути створені за допомогою дієслів минулого 
часу (наприклад, “OrderCreated” – «замовлення 
створено», “OrderCancelled” – «замовлення скасо-
вано» тощо) [1, 9]. У доменних подіях зазвичай 
містяться метадані, як-от унікальний ідентифіка-
тор, часова відмітка (timestamp), ідентифікатор 
користувача, який вніс зміни, та інші [1]. 

Оскільки часто обробнику події необхідні 
додаткові дані, що відображають суть змін 
стану системи, а не лише повідомляють про 
факт таких змін, для запобігання додатковому 
запиту з його боку використовується так зване 
збагачення подій (event enrichment). Наприклад, 
подія “OrderCreated” може вже містити деталі 
щойно створеного замовлення, отже, спожива-



42

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

чам даної події не потрібно буде додатково запи-
тувати цю інформацію під час її оброблення. 
Такий підхід може дещо знизити підтримува-
ність (maintainability) завдяки тому, що потен-
ційно класи (або інші структури даних), якими 
описуються події, потребуватимуть змін кожного 
разу, коли змінюватимуться вимоги споживачів. 
Іншим недоліком може бути спроба задовільнити 
потреби багатьох різних споживачів події. Проте 
це досить рідкі сценарії, які не мають критичного 
характеру [1].

Одним із підходів визначення доменних подій 
є event storming. Він передбачає комунікацію з 
доменними експертами, яка складається із трьох 
етапів, як-от: мозковий штурм подій – доменні 
експерти пропонують можливі доменні події сис-
теми; визначення тригерів подій – доменні екс-
перти мають визначити тригери, які продукують 
події (дії користувачів, зовнішня система, інша 
доменна подія, плин часу); ідентифікація агре-
гатів – доменні експерти повинні визначити які 
агрегати споживають які команди та продукують 
відповідні події [1]. 

Незважаючи на те, що успішне виконання 
команд (як-от дії користувачів), фактично, ство-
рює події, ці концепції необхідно чітко розріз-
няти. Команди – це повідомлення, які надходять 
зовні, уособлюють запит на зміну стану сис-
теми, їх виконання може бути як успішним, так 
і невдалим; звідси випливає імперативна форма 
їхніх назв (наприклад, “CreateOrder” – «створити 
замовлення»). Події ж уособлюють зміну стану, 
яка щойно відбулася, тому не можуть бути вико-
нані невдало; звідси, відповідно, і форма їхніх 
назв у минулому часі (“OrderCreated” – «замов-
лення створено») [19]. 

Доменні події публікуються агрегатами, проте 
небажано, щоб вони напряму публікували пові-
домлення у брокер повідомлень через те, що 
для них неможливе впровадження залежностей 
(dependency injection), реалізація даної можливо-
сті призведе до змішування бізнес-логіки й інф-
раструктурних питань. Кращим підходом буде 
використання сервісів, які можуть застосовувати 
впровадження залежностей (отже, і отримати 
через даний механізм посилання на API відправки 
повідомлень) та, відповідно, взяти на себе від-
повідальність за відправку подій. Таким чином, 
агрегати генерують події кожного разу, коли змі-
нюється їхній стан, та повертають їх сервісам. 
Наприклад, сервіс може зробити запит у сховище 
даних через репозиторій, що поверне екземп-
ляр агрегату, на якому сервісом буде викликано 
метод, що приймає параметри, що змінюють його 
стан, та який поверне сервісу список подій, які 
він опублікує через брокер повідомлень. Іншим 
можливим підходом може бути акумулювання 

агрегатом необхідних для відправки подій у 
публічному полі, яке потім вичитується сервісом 
для публікації подій. Недоліком першого варіанту 
є необхідність повертання порожніх подій у разі, 
коли методи нічого не повертають, а недоліками 
другого є необхідність застосування механізмів 
інкапсуляції коду, що забезпечує сервісу доступ 
до списку подій і повторюватиметься, а також 
ускладнення доступу до даного поля об’єктам, які 
не є кореневими [1].

Традиційний спосіб організації персистентно-
сті даних системи відбувається за допомогою збе-
реження їх у базу даних або нереляційне сховище. 
Такий підхід має низку недоліків. По-перше, вико-
ристання реляційної бази даних підходить лише 
для обмеженого набору даних, які за своєю приро-
дою можуть бути представлені у формі таблиць. 
Оскільки здебільшого дані предметних областей 
потребують додаткових перетворень для збере-
ження в реляційній базі даних, виникає так зва-
ний об’єктно-реляційний розрив (object-relational 
impedance mismatch), а використання ORM-фре-
ймворків (ORM – object-relational mapping, об’єк-
тно-реляційне відображення) не є, загалом, ефек-
тивним і зручним [1, 20]. По-друге, традиційний 
підхід не дозволяє нативно зберігати історію змін, 
що може бути корисним для аудиту системи або 
відновлення її попереднього стану. По-третє, для 
традиційного підходу збереження даних, публіка-
ція подій не є частиною бізнес-логіки й має бути 
реалізовано окремо, що підвищує ризик виник-
нення проблем із синхронізацією поточного стану 
після оновлень [1]. 

Проте реалізація персистентності можлива 
не лише через безпосереднє збереження стану у 
сховище даних. Альтернативою цьому підходу 
є патерн event sourcing, який передбачає збере-
ження стану агрегату як послідовності подій, де 
кожна така подія являє собою черговий випадок 
зміни стану. Тоді відтворення стану агрегату від-
бувається через повторюване послідовне засто-
сування змін, привнесених кожною подією [1]. 
Event sourcing також підходить для застосування у 
функціональній парадигмі, бо передбачає не зміну 
даних, а лише збереження незмінних записів змін 
цих даних, на основі яких можна реконструювати 
поточний стан системи [21]. 

Події, що змінюють стан агрегатів, зберіга-
ються у сховищі подій (event store). Кожна подія 
містить ідентифікатор і тип події, ідентифікатор і 
тип сутності (або агрегату), до якої вона має стосу-
нок, та корисне навантаження, як дані зміни стану, 
передбачені самою подією. Стан агрегату зміню-
ється як результат наступного процесу: надходить 
команда, яка містить запит на виконання визна-
ченої дії, яка валідується агрегатом, який, якщо 
не виникає помилок і виключень, генерує список 



43

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

подій зміни стану, після чого вони зберігаються у 
сховищі подій, а відповідні обробники агрегатів, 
яким адресовані ці події, приймають їх і застосо-
вують. Важливо, що ці обробники не мають закін-
чувати своє виконання невдачею, тому що пере-
хід системи в новий стан уже відбувся, а також 
мають бути ідемпотентними – тобто повинні 
правильно обробляти ситуацію, коли подія, що 
вже була оброблена, надійте повторно. У разі, 
коли надходить декілька подій, що мають оно-
вити той самий агрегат, необхідно застосовувати 
заходи, що забезпечують транзакційність такого 
оновлення (наприклад, оптимістичне блокування 
(optimistic locking)). Такі запобіжні механізми 
(як-от видавець опитувань (polling publisher) і від-
стеження транзакційного журналу (transaction log 
tailing)) мають використовуватися також під час 
публікування подій, бо це має бути атомарною 
операцією. Оскільки деякі агрегати можуть мати 
велику кількість оновлень та, відповідно, велику 
кількість подій, з яких необхідно їх конструювати, 
для оптимізації об’єму сховища даних і продук-
тивності застосовують знімки (snapshot) n-ої кіль-
кості попередніх подій, «згортаючи» їх у єдину 
подію, що відразу містить дані поточних змін [1].

Важливим питанням у застосуванні патерну 
event sourcing є еволюція подій, бо не завжди 
цей процес може бути зворотним. Наприклад, 
розширення моделі через додавання нового поля 
не перешкоджає застосуванню попередніх знім-
ків стану системи, але звуження моделі через 
перейменування, видалення або зміну типу поля, 
як і зміна назви агрегату або пов’язаної з ним 
події, уже є несумісним із попередньою версією 
агрегату. Способом вирішення цієї проблеми є 
застосування спеціального компонента, що онов-
лює події до нової версії в момент завантаження зі 
сховища. Такий компонент має назву upcaster [1]. 

Ще одним питанням, яке постає під час про-
єктування системи з event sourcing, є потенційна 
необхідність виправлення помилок у попередніх 
подіях або їх перестановка, у разі чого поточний 
стан був би іншим. Ключ до вирішення цієї про-
блеми дає патерн ретроактивна подія (retroactive 
event) – тобто подія, яка б вплинула на поточний 
стан системи, якби була оброблена у визначеній 
часовій точці в минулому. Використання цього 
поняття дозволяє осмислювати процес виправ-
лення помилок, як наступні три паралельні моделі 
(parallel model): некоректна реальність (incorrect 
reality) – поточний стан, що не враховує ретро-
активну подію; коректна гілка (corrected reality) – 
стан системи, якого вона набула б, якби відбулася 
обробка ретроактивної події; коректна реальність 
(corrected reality) – фінальний стан системи, у 
якому вона має опинитися. Здебільшого корек-
тна реальність збігатиметься з коректною гілкою, 

проте необов’язково. Суть методу зводиться до 
ідентифікації моменту необхідності застосування 
ретроактивної події – точки розгалуження (branch 
point), – повернення стану системи в дану точку та 
виправлення помилки [22, 23]. Даний підхід отри-
мав розвиток з позиції питання спостережувано-
сті (observability) системи. Хоча event sourcing і 
дозволяє відстежувати всі бізнес-події, у журналі 
подій (event log) часто не вистачає необхідної 
інформації для відстеження причинно-наслідко-
вих зв’язків і взаємодій бізнес-подій у системі, що 
ускладнює процес налагодження. Способом вирі-
шення даної проблеми є використання трасування 
(tracing), що надає спосіб відновлення причин-
но-наслідкового потоку виконання для конкрет-
них запитів разом із метаданими, пов’язаними із 
внутрішнім станом системи, як-от змінні та часові 
відмітки. Отже, у розробників з’являється додат-
ковий інструмент пошуку всіх, пов’язаних з окре-
мою проблемою, подій за допомогою ідентифіка-
тора трасування [24]. 

До переваг застосування event sourcing нале-
жать надійна публікація подій, збереження істо-
рії змін агрегатів, практично повне уникнення 
об’єктно-реляційного розриву через те, що збері-
гаються окремі події, а не агрегований стан [1], а 
також той факт, що моделювання домену з вико-
ристанням event sourcing наближає вихідний код 
програми до того, що відбувається в реальному 
світі, на відміну від спроб абстрагувати модель 
[19]. До недоліків відносять складність у реалі-
зації, труднощі з еволюціюванням подій і вида-
ленням даних, а також можливе ускладнення 
процесу читання даних, коли для задоволення 
запиту необхідно спершу вичитати та застосувати 
всі пов’язані з даним агрегатом події, лише після 
чого можна буде виконати передбачувану запи-
том фільтрацію та отримати шуканий результат. 
Системи, що містять такі запити, повинні вико-
ристовувати інший патерн, який оптимізує процес 
читання: CQRS (command and query responsibility 
segregation, розділення відповідальності команд-
них запитів) [1].

Основна ідея патерну CQRS полягає в розді-
ленні сховищ запису та читання. Фактично, таке 
розділення відбувається на рівні команд, що змі-
нюють агрегат (тобто виконують операції ство-
рення, зміни та видалення), та запитів, що вичи-
тують його поточний стан. Частина, що відповідає 
за роботу з командами, також може застосовувати 
операцію читання в разі, коли вона не є ресурсо-
затратною. Натомість усі складні та нетривіальні 
запити спрямовуються до частини, що відповідає 
за читання даних, у яку зміни пропагуються зі 
сховища для запису. Сховище для читання може 
містити спеціально підготовлені подання для 
складних запитів, але оптимізації можуть бути 



44

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

застосовані до обох типів сховищ залежно від 
потреб домену, найбільш явною з яких є викори-
стання різних типів сховищ для запису та читання, 
замість компромісного рішення, яке виконує 
обидві операції повільніше, ніж спеціалізовані. 
Використання CQRS не лише дозволяє оптимізу-
вати роботу з командами та запитами, а й робить 
можливим використання патерну event sourcing та 
дозволяє покращити розділення обов’язків, що є 
одним із принципів SOLID. Окрім того, комбіна-
ція патернів event sourcing і CQRS дозволяє отри-
мати відносно невисоку складність розроблення 
та підтримки складних і великих систем. Недо-
ліком використання CQRS є неминуче усклад-
нення архітектури та наявність лагу реплікації – 
дані пропагуються зі сховища запису у сховище 
читання не миттєво [1, 25]. 

Коли домен не диктує складні умови й патерни 
event sourcing та CQRS можуть занадто усклад-
нити систему, але питання збору єдиної відповіді 
кінцевому клієнту на основі даних, що належать 
кільком мікросервісам, залишається, варто засто-
совувати патерн об’єднання API (API composition). 
Застосування даного патерну передбачає вико-
ристання нового компонента, що має назву  
“API composer”, який виконує запити в необхідні 
сервіси та будує остаточне подання для клієнта.

Виконувати роль API composer’а може клієнт-
ський застосунок, API gateway, окремий спеціалі-
зований сервіс. Перший варіант може виявитися 
неоптимальним, тому що між клієнтським кодом 
і базою даних є фаєрвол і повільніша мережа, 
через яку неефективно передавати зайві дані. 
Другий варіант буде найбільш ефективний тоді, 
коли споживачами API composer’а є зовнішні клі-
єнти, як-от веб- або мобільний застосунок. Тре-
тій варіант має сенс у разі, коли в ролі спожива-
чів виступають внутрішні сервіси на бекенді, або 
логіка об’єднання даних, які необхідно віддавати 
зовнішньому клієнту, надмірно складна для того, 
щоб бути реалізованою в рамках API gateway. 

Незважаючи на те, що об’єднання API є про-
стішим патерном у реалізації, ніж CQRS, він 

також має низку недоліків. Серед них підвищені 
накладні витрати на додаткові запити даних, ризик 
зниження доступності системи через появу нового 
компонента (можливим способом боротьби із цим 
є кешування або повернення неповних даних 
у разі недоступності API composer’а), а також 
виникнення неконсистентних даних тоді, коли 
дані сервісів, з яких формується остаточна відпо-
відь, ще не узгоджені одне з одним [1]. 

Висновки. Проведений аналіз підходів до 
організації бізнес-логіки в побудові мікросер-
вісних систем демонструє, що натепер у кон-
тексті побудови мікросервісів за умов складної 
предметної області перспективною є парадигма 
Domain-Driven Design (DDD). Цей підхід забез-
печує високу підтримуваність коду та точну від-
повідність моделі бізнес-вимогам, особливо в 
довгостроковому розвитку системи.

Для систем з відносно простою бізнес-логікою  
допустиме застосування таких патернів, як 
Transaction Script або Active Record, які є прості-
шими в реалізації та потребують менше зусиль на 
впровадження. Однак рішення на основі даних 
патернів показують обмежені можливості за 
зростання об’єму кодової бази проєкту та підви-
щення складності бізнес-логіки системи. 

Отже, застосування того чи того підходу без-
посередньо залежить від складності та динаміки 
предметної галузі. Для систем з високою вола-
тильністю та складною бізнес-логікою доцільно 
застосовувати парадигму DDD, незважаючи на 
її складність та високий поріг входу. Для систем 
малої та середньої складності краще підходять 
прості патерни, що забезпечують швидку реаліза-
цію за обмежених ресурсів.

Перспективні напрями подальших досліджень 
такі: оптимізація DDD для типових сценаріїв, 
що дозволить зменшити витрати на його впрова-
дження; розроблення і апробація гібридних під-
ходів, що поєднують переваги парадигми DDD і 
простіших патернів; формалізація метрик оціню-
вання архітектурних рішень у контексті бізнес-ло-
гіки мікросервісів.

ЛІТЕРАТУРА
1.	 Richardson C. Microservices patterns: with examples in Java. Shelter Island, New York : Manning 

Publications, 2019.
2.	 Newman S. Building microservices: designing fine-grained systems, Second Edition. Beijing : O’Reilly 

Media, 2021.
3.	 Deursen S. van, Seemann M. Dependency injection: principles, practices, patterns. Shelter Island : 

Manning, 2019.
4.	 Lieser S. Clean Architecture vs. Onion Architecture vs. Hexagonal Architecture, CCD Akademie. URL: 

https://ccd-akademie.de/en/clean-architecture-vs-onion-architecture-vs-hexagonale-architektur/
5.	 Palermo J. The Onion Architecture : part 1. Programming with Palermo. URL: https://jeffreypalermo.

com/2008/07/the-onion-architecture-part-1/
6.	 Fowler M. Patterns of enterprise application architecture, Nineteenth printing. in The Addison-Wesley 

Signature Series. Boston ; San Francisco ; New York ; Toronto ; Montreal ; London ; Munich ; Paris ; 
Madrid ; Capetown : Addison-Wesley, 2013.



45

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

7.	 Khononov V. Learning domain-driven design: aligning software architecture and business strategy. 
Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo : O’Reilly, 2022.

8.	 Mota I. Anaemic Domain Model vs. Rich Domain Model. Ensono. Insights + News. URL: https://www.
ensono.com/insights-and-news/expert-opinions/anaemic-domain-model-vs-rich-domain-model/

9.	 Wlaschin S. Domain modeling made functional: tackle software complexity with domain-driven design 
and F♯, Version: P1.0. Raleigh, North Carolina : The Pragmatic Bookshelf, 2018.

10.	 Fowler M. Domain Driven Design. URL: https://martinfowler.com/bliki/DomainDrivenDesign.html
11.	 Esther D. Behavior-Driven Development for Domain-Driven Design in Modern Software. URL: https://

www.researchgate.net/publication/386136826_Behavior-Driven_Development_for_Domain-Driven_
Design_in_Modern_Software

12.	 Verraes M., Wirfs-Brock R. Splitting a Domain Across Multiple Bounded Contexts. URL: https://verraes.
net/2021/06/split-domain-across-bounded-contexts/

13.	 Vural H., Koyuncu M. Does Domain-Driven Design Lead to Finding the Optimal Modularity of a 
Microservice? IEEE Access. 2021. Vol. 9. P. 32721–32733. DOI: 10.1109/ACCESS.2021.3060895

14.	 Kapferer S., Zimmermann O. Domain-Driven Architecture Modeling and Rapid Prototyping with Context 
Mapper. Model-Driven Engineering and Software Development / S. Hammoudi, L. F. Pires, B. Selić 
(Eds.). Communications in Computer and Information Science. Vol. 1361. Cham : Springer International 
Publishing, 2021. P. 250–272. DOI: 10.1007/978-3-030-67445-8_11

15.	 Evans E. Domain-driven design: tackling complexity in the heart of software. Boston : Addison-Wesley, 
2004.

16.	 Fowler M. DDD Aggregate. URL: https://martinfowler.com/bliki/DDD_Aggregate.html
17.	 Khorikov V. Domain model purity vs. domain model completeness (DDD Trilemma). Enterprise 

Craftsmanship. URL: https://enterprisecraftsmanship.com/posts/domain-model-purity-completeness
18.	 Özkan O., Babur Ö., Van Den Brand M. Refactoring with domain-driven design in an industrial 

context: An action research report. Empir Software Eng. Jul. 2023. Vol. 28. № 4. P. 94. DOI: 10.1007/
s10664-023-10310-1

19.	 Barbini U. From objects to functions: build your software faster and safer with functional programming 
and Kotlin. Dallas, Texas : The Pragmatic Bookshelf, 2023.

20.	 Colley D., Stanier C., Asaduzzaman M. Investigating the Effects of Object-Relational Impedance Mismatch 
on the Efficiency of Object-Relational Mapping Frameworks. Journal of Database Management. Oct. 
2020. Vol. 31. № 4. P. 1–23. DOI: 10.4018/JDM.2020100101

21.	 Khorikov V. OOP, FP, and object-relational impedance mismatch. Enterprise Craftsmanship. URL: https://
enterprisecraftsmanship.com/posts/oop-fp-and-object-relational-impedance-mismatch/

22.	 Fowler M. Retroactive Event. URL: https://martinfowler.com/eaaDev/RetroactiveEvent.html
23.	 Fowler M. Parallel Model. URL: https://martinfowler.com/eaaDev/ParallelModel.html
24.	 Lima S., Correia J., Araujo F., Cardoso J. Improving observability in Event Sourcing systems. Journal of 

Systems and Software. Nov. 2021. Vol. 181. P. 111015. DOI: 10.1016/j.jss.2021.111015
25.	 Overeem M., Spoor M., Jansen S., Brinkkemper S. An empirical characterization of event sourced systems 

and their schema evolution – Lessons from industry. Journal of Systems and Software. Aug. 2021. Vol. 
178. P. 110970. DOI: 10.1016/j.jss.2021.110970

REFERENCES
1.	 Richardson, C. (2019). Microservices patterns: With examples in Java. Manning Publications.
2.	 Newman, S. (2021). Building microservices: Designing fine-grained systems (Second Edition). O’Reilly 

Media.
3.	 Deursen, S. van, & Seemann, M. (2019). Dependency injection: Principles, practices, patterns. Manning.
4.	 Lieser, S. (2024, February 9). Clean Architecture vs. Onion Architecture vs. Hexagonal Architecture. 

CCD Akademie. https://ccd-akademie.de/en/clean-architecture-vs-onion-architecture-vs-hexagonale-
architektur/

5.	 Palermo, J. (2008, July 29). The Onion Architecture: Part 1. Programming with Palermo. https://
jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

6.	 Fowler, M. (2013). Patterns of enterprise application architecture (Nineteenth printing). Addison-Wesley.
7.	 Khononov, V. (2022). Learning domain-driven design: Aligning software architecture and business 

strategy. O’Reilly.
8.	 Mota, I. (2023, May 24). Anaemic Domain Model vs. Rich Domain Model. Ensono. Insights + News. 

https://www.ensono.com/insights-and-news/expert-opinions/anaemic-domain-model-vs-rich-domain-
model/



46

Computer Science and Applied Mathematics. № 2 (2025)  ISSN 2786-6254

9.	 Wlaschin, S. (2018). Domain modeling made functional: Tackle software complexity with domain-driven 
design and F♯ (Version: P1.0). The Pragmatic Bookshelf.

10.	 Fowler, M. (2020, April 22). Domain Driven Design. https://martinfowler.com/bliki/DomainDrivenDesign.
html

11.	 Esther, D. (2023, February). Behavior-Driven Development for Domain-Driven Design in Modern 
Software. https://www.researchgate.net/publication/386136826_Behavior-Driven_Development_for_
Domain-Driven_Design_in_Modern_Software

12.	 Verraes, M., & Wirfs-Brock, R. (2021, June 14). Splitting a Domain Across Multiple Bounded Contexts. 
https://verraes.net/2021/06/split-domain-across-bounded-contexts/

13.	 Vural, H., & Koyuncu, M. (2021). Does Domain-Driven Design Lead to Finding the Optimal Modularity 
of a Microservice? IEEE Access, 9, 32721–32733. https://doi.org/10.1109/ACCESS.2021.3060895

14.	 Kapferer, S., & Zimmermann, O. (2021). Domain-Driven Architecture Modeling and Rapid Prototyping 
with Context Mapper. In S. Hammoudi, L. F. Pires, & B. Selić (Eds.), Model-Driven Engineering 
and Software Development (Vol. 1361, pp. 250–272). Springer International Publishing. https://doi.
org/10.1007/978-3-030-67445-8_11

15.	 Evans, E. (2004). Domain-driven design: Tackling complexity in the heart of software. Addison-Wesley.
16.	 Fowler, M. (2013, April 23). DDD Aggregate. https://martinfowler.com/bliki/DDD_Aggregate.html
17.	 Khorikov, V. (2020, August 4). Domain model purity vs. Domain model completeness (DDD Trilemma). 

Enterprise Craftsmanship. https://enterprisecraftsmanship.com/posts/domain-model-purity-completeness
18.	 Özkan, O., Babur, Ö., & Van Den Brand, M. (2023). Refactoring with domain-driven design in an industrial 

context: An action research report. Empirical Software Engineering, 28(4), 94. https://doi.org/10.1007/
s10664-023-10310-1

19.	 Barbini, U. (2023). From objects to functions: Build your software faster and safer with functional 
programming and Kotlin. The Pragmatic Bookshelf.

20.	 Colley, D., Stanier, C., & Asaduzzaman, M. (2020). Investigating the Effects of Object-Relational 
Impedance Mismatch on the Efficiency of Object-Relational Mapping Frameworks: Journal of Database 
Management, 31(4), 1–23. https://doi.org/10.4018/JDM.2020100101

21.	 Khorikov, V. (2016, November 3). OOP, FP, and object-relational impedance mismatch. Enterprise 
Craftsmanship. https://enterprisecraftsmanship.com/posts/oop-fp-and-object-relational-impedance-
mismatch/

22.	 Fowler, M. (2005, December 12). Retroactive Event. https://martinfowler.com/eaaDev/RetroactiveEvent.
html

23.	 Fowler, M. (2005, December 12). Parallel Model. https://martinfowler.com/eaaDev/ParallelModel.html
24. Lima, S., Correia, J., Araujo, F., & Cardoso, J. (2021). Improving observability in Event Sourcing systems. 

Journal of Systems and Software, 181, 111015. https://doi.org/10.1016/j.jss.2021.111015
25.	 Overeem, M., Spoor, M., Jansen, S., & Brinkkemper, S. (2021). An empirical characterization of event 

sourced systems and their schema evolution—Lessons from industry. Journal of Systems and Software, 
178, 110970. https://doi.org/10.1016/j.jss.2021.110970

Дата першого надходження рукопису до видання: 24.08.2025
Дата прийнятого до друку рукопису після рецензування: 19.09.2025

Дата публікації: 31.12.2025


