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У роботі представлено методологію до адаптивного чисельного 
моделювання складних фізичних процесів із використанням методів 
машинного навчання. Основна увага зосереджена на інтеграції 
багатошарових нейронних мереж і алгоритмів навчання з підкріпленням 
у цикл чисельного розрахунку з метою досягнення оптимального 
балансу між точністю та обчислювальними витратами. Запропонована 
архітектура передбачає поєднання попереднього прогнозування 
параметрів дискретизації за допомогою нейромережі та динамічної 
корекції цих параметрів агентом підкріплювального навчання. У роботі 
сформульовано математичну постановку задачі, що враховує похибку 
чисельного розв’язку та вартість обчислень, розроблено функцію 
винагороди для RL-агента та побудовано блок-схему інтегрованої 
архітектури на основі алгоритму PPO.
Апробація архітектури виконана на тестових задачах теплопровідності 
в неоднорідному середовищі та хвильового рівняння в обмеженій 
області. Результати показали, що використання адаптивної MLP + RL 
архітектури дозволяє зменшити похибку обчислень до рівня 1,2–1,6% 
за скорочення часу виконання в 6–8 разів порівняно з високоточними 
еталонними рішеннями. Порівняння з рівномірною сіткою підтвердило 
суттєве підвищення ефективності розробленого методу. Отримані дані 
свідчать про можливість автоматичного зосередження обчислювальних 
ресурсів у критичних зонах та збереження прийнятної швидкодії в більш 
однорідних областях.
Отже, інтеграція методів машинного навчання в чисельному моделюванні 
відкриває перспективи створення універсальних адаптивних алгоритмів, 
здатних забезпечити високу точність без істотного зростання 
обчислювальних витрат. Подальший розвиток роботи пов’язаний із 
використанням фізично орієнтованих нейронних мереж (PINNs) та 
розширенням апробації на багатовимірні й нелінійні системи.
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This work presents a methodology for adaptive numerical modeling of 
complex physical processes using machine learning methods. The main 
focus is on integrating multilayer neural networks and reinforcement learning 
algorithms into the numerical computation cycle to achieve an optimal balance 
between accuracy and computational cost. The proposed architecture combines 
preliminary prediction of discretization parameters by a neural network with 
dynamic correction of these parameters by a reinforcement learning agent. The 
mathematical formulation of the problem, which accounts for the numerical 
solution error and computational cost, is introduced; a reward function for 
the RL agent is developed, and a block diagram of the integrated architecture 
based on the PPO algorithm is constructed.
The architecture was tested on benchmark problems of heat conduction 
in a heterogeneous medium and the wave equation in a bounded domain. 
The results demonstrated that the adaptive MLP+RL architecture reduces 
computational error to the level of 1,2–1,6% while decreasing runtime by a 
factor of 6–8 compared to high-precision reference solutions. Comparison 
with a uniform grid confirmed a significant increase in the efficiency of the 
developed method. The obtained data indicate the ability to automatically 
concentrate computational resources in critical zones while maintaining 
acceptable performance in more homogeneous regions.
Thus, the integration of machine learning methods into numerical modeling 
opens prospects for creating universal adaptive algorithms capable of providing 
high accuracy without a substantial increase in computational costs. Further 
work is associated with the use of physics-informed neural networks (PINNs) 
and extending testing to multidimensional and nonlinear systems.
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Вступ. Чисельне моделювання є одним із клю-
чових інструментів сучасної науки й інженерії. 
Воно застосовується для аналізу теплових, хви-
льових, гідродинамічних і електромагнітних про-
цесів, які складно або неможливо дослідити екс-
периментально. Проте одним із головних викликів 
залишається компроміс між точністю розрахунків 
і обчислювальними витратами.

Традиційні адаптивні методи – локальне згу-
щення сітки [1], зміна кроку інтегрування [2], 
оцінка похибки – здатні підвищувати точність, 
однак вони обмежені жорсткими евристичними 
правилами. Це призводить до того, що в бага-
тьох випадках обчислювальні ресурси витрача-
ються неефективно. У цьому контексті методи 
машинного навчання (далі – ML) відкривають 
нові перспективи [3]. Вони дають змогу автома-
тично визначати оптимальні параметри чисель-
ного розрахунку [4], прогнозувати поведінку 
системи [5] та керувати процесом адаптації [6]. 

Особливий інтерес становить застосування нав-
чання з підкріпленням (далі – RL) [7], де агент 
взаємодіє із чисельною моделлю як із середо-
вищем і навчається ухвалювати рішення, що 
зменшують похибку за збереження продуктив-
ності. Мета та завдання. Мета роботи – дослі-
дити можливості впровадження методів машин-
ного навчання, зокрема нейронних мереж і 
алгоритмів навчання з підкріпленням, у процес 
адаптивного чисельного моделювання складних 
фізичних процесів, оцінити їхню ефективність 
на тестових задачах теплопровідності й хвильо-
вої динаміки.

Завдання дослідження:
–	 проаналізувати сучасні адаптивні чисельні 

методи, визначити їхні обмеження в балансі між 
точністю і обчислювальними витратами;

–	 розробити математичну постановку 
задачі, що поєднує критерії точності чисельного 
розв’язку та вартість обчислень;
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–	 створити архітектуру нейронної мережі для 
прогнозування оптимальних параметрів сітки та 
часових кроків на основі локальних характерис-
тик фізичного поля;

–	 реалізувати агент навчання з підкріпленням 
для динамічного вибору параметрів дискретизації 
під час чисельного моделювання;

–	 інтегрувати нейронну мережу та RL-алго-
ритм у єдиний адаптивний цикл моделювання;

–	 провести апробацію розробленої архітек-
тури на тестових задачах теплопровідності в нео-
днорідному середовищі та хвильового рівняння в 
обмеженій області;

–	 порівняти отримані результати з еталонними 
чисельними розв’язаннями та традиційними мето-
дами для оцінювання точності, продуктивності й 
ефективності.

Огляд літератури. Адаптивні чисельні методи 
почали активно розвиватися у другій половині ХХ 
ст. у відповідь на потребу підвищення точності 
розрахунків без істотного збільшення обчислю-
вальних витрат. Одним із базових напрямів став 
метод локального згущення сітки (Adaptive Mesh 
Refinement (далі – AMR)) [8; 9], що дозволяє дета-
лізувати область обчислень лише в тих зонах, 
де спостерігаються великі градієнти чи суттєві 
зміни розв’язку. Паралельно вдосконалювалися 
адаптивні методи інтегрування, серед яких кла-
сичним прикладом є алгоритми Рунге – Кутти з 
автоматичним вибором кроку [10]. Іншим важли-
вим підходом стали мультигрідові методи [11], які 
поєднують розв’язки, отримані на різних рівнях 
дискретизації, забезпечують ефективне приско-
рення збіжності.

З початком XXI ст. в чисельному моделюванні 
з’явилися методи, що інтегрують можливості 
машинного навчання. Значну увагу привернули 
Physics-Informed Neural Networks (далі – PINNs) 
[12], де фізичні рівняння безпосередньо вклю-
чаються до функції втрат, що дозволяє навчати 
мережу розв’язувати диференціальні рівняння 
без традиційної дискретизації. Іншим напрямом 
стало використання автоенкодерів і генеративних 
змагальних мереж (далі – GAN) для апроксима-
ції складних багатовимірних рішень [13; 14], що 
важко піддаються класичному чисельному ана-
лізу. Окрему гілку становлять методи, засновані 
на навчанні з підкріпленням, де RL-агенти здій-
снюють вибір параметрів сітки та кроку часу у 
процесі обчислення, поступово навчаючись зна-
ходити компроміс між точністю та продуктив-
ністю [15; 16].

Попри значні досягнення, існує низка невирі-
шених проблем. По-перше, більшість запропоно-
ваних методів є локальними та добре працюють 
лише для конкретного класу задач, що обмежує 
їхню універсальність. По-друге, методи на основі 

машинного навчання часто потребують великих 
обсягів даних для тренування, тоді як у чисель-
ному моделюванні не завжди можна створити 
достатній набір еталонних рішень. По-третє, 
не досить розробленими залишаються гібридні 
методи, що поєднують класичні чисельні алго-
ритми із ML-компонентами для отримання ста-
більних і узагальнених рішень.

У сукупності ці обмеження формують запит 
на нові методи, що здатні узгоджено інтегрувати 
машинне навчання з адаптивними чисельними 
процедурами. Саме тому дане дослідження зосе-
реджене на розробленні методу, що базується 
на нейронних мережах і алгоритмах навчання з 
підкріпленням, з метою створення універсальної 
системи адаптивного моделювання, яка б забез-
печувала підвищення точності без додаткових 
обчислювальних витрат.

Методи та моделі. Математичне формулю-
вання задачі. Базовою моделлю[17] розглядається 
одномірне рівняння теплопровідності на відрізку 
Ω = [0,L] у проміжку часу t ∈ [0,T]:
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x t
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із початковою умовою:
u(x,0)=u0(x), x∈[0,L],                    (2)

граничними умовами одного з типів (за потреби – 
змішаними):

–	 Діріхле – u (0,t) = g0(t),  u (L,t) = gL(t);

–	 Нейман – �
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Коефіцієнт теплопровідності α > 0 у базовій 
постановці вважаємо сталим; узагальнення на  
α = α(x) розглянуто далі в тексті.

Для валідації та побудови еталонних розв’яз-
ків корисним є випадок однорідних умов Діріхле 
u(0,t) = u(L,t) = 0 та гладкої початкової умови з 
розкладом у ряд Фур’є:
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Цей аналітичний вираз використовуватимемо 
як uref​ там, де це можливо; інакше uref формуємо 
як високоточний (надтонка сітка/малий крок) 
чисельний розв’язок.

Зручно ввести безрозмірні змінні x∗ = x/L,  
t∗ = t/T, тоді безрозмірний параметр Фур’є:
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( )2 ,                               (4)

відіграє ключову роль у стійкості явних схем.
Дискретизація. Розіб’ємо [0,L] на N інтерва-

лів рівної довжини Δx = L/N з вузлами xi = i Δx,  
i = 0,…,N, а [0,T] – на M кроків Δt = T/M з момен-
тами tn = n Δt, n = 0,…,M. Позначимо 

u u x ti
n

i
n≈ ( , ) .
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Використаємо явну часову апроксимацію 
(прямий крок Ейлера) та центральну просторову 
різницю другого порядку. Для внутрішніх вузлів  
i = 1, …, N−1 маємо схему:

u u
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Щодо граничних вузлів, за умов Діріхле зна-
чення u g t u g tn n

N
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0 0= =( ), ( )  задаються явно.
За умов Неймана, наприклад у x = 0, вико-

ристовуємо «уявний» вузол un−1  ​ через односто-
ронню різницю:
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аналогічно в x=L: u u xq tN
n
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� �� � �1 1 2 ( ) . Підста-
новка цих виразів у явну формулу зберігає другий 
порядок за простором.

Зупинимося на порядку точності й узгодже-
ності. Локальна похибка апроксимації (truncation 
error) для схеми «Ейлер уперед + центральна різ-
ниця» має вигляд:
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n O t O x� � � �( ) (( ) )2 ,                    (8)

тобто схема перша за часом і друга за простором, 
узгоджена з ПДУ.

Щодо стійкості, класичний аналіз фон Неймана 
дає для 1D-явної схеми умову стійкості:
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У разі змінних кроків Δxi​ та/або Δtn ​ локальна 
умова набуває вигляду
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а для просторово-змінного коефіцієнта α(x) 
досить вимагати
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Узагальнення на α = α(x). У такому разі дис-
кретний оператор доцільно записувати в консер-
вативній формі з потоком J=−αux​ [18]:
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де αi+1/2​​ – гармонійне або щонайменше середнє 
значення α на інтервалі [xi,xi+1] (це покращує ста-
більність і фізичну узгодженість на розривах α).

Адаптивні кроки в нашій постановці Δx і Δt 
можуть змінюватись динамічно. Для збереження 
простоти реалізації допускаємо кусково-однорідні 
ділянки сітки (AMR-рівні) та глобально-ступін-
частий час, кожна операція згущення/розрідження 
супроводжується інтерполяцією/рестрикцією з не 
нижчим від другого порядку точності. Вибір Δt 

підпорядковується найсуворішій локальній умові 
max /i i

nr ≤1 2 ​.
Функціонал оптимізації. Мета – мінімізувати 

похибку чисельного розв’язку щодо еталонного 
за заданого бюджету ресурсів. Нехай unum(x,t; P) – 
чисельний розв’язок, що залежить від набору пара-
метрів дискретизації та адаптації P (просторові 
кроки, часові кроки, локальні рівні AMR, порядок 
схеми тощо) [19]. Нехай uref(x,t) – еталон (аналі-
тичний або високоточний чисельний).

У виборі норми похибки використовуємо дві екві-
валентні мети: похибка в кінцевий момент T та інте-
гральна похибка в часі. Відповідні функціонали:

E P u T P u TT num ref L L
( ) ( , , ) ( , ) ,

( , )
� � � �

2 0
          (13)
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0 0
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1
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/

( ) ( , , ) ( , ) ( )� � � � � �
�

�
��

�

�
��� �

22

,    (14)

де ω(t)≥0 – вагова функція (усталено ω≡1). У дис-
кретній формі (трапецієподібна квадратура):

E P u u x tT i
n

ref i
n

i

N

n

M
n

0
2

0

2

0
, ,( )� �

��

� �� � ��

�
�

�

�
� ��� � .       (15)

Модель вартості обчислень ураховує кількість 
вузлів і кроків, а також вартість міжсіткових опе-
рацій:

С P k N k N k Nn ref restr i
n

M

( ) /� � �
�

�

�1 2 3 0
0

1

​,           (16)

де Nn​ – кількість активних вузлів на кроці n, Nref/

restr – число операцій згущення/рестрикції, Nio​ – 
допоміжні операції (оцінка похибки, інтерполя-
ція в часі тощо), k1, k2, k3>0 – питомі коефіцієнти 
вартості. У найпростішому випадку користуються 
наближенням C ≈ κ∑nNn​.

Оптимізаційна постановка задачі передбачає 
таке формулювання з обмеженням на ресурси та 
стійкість [20]:

min ( ) ( ) , ( ) ,max
P

i
nE P C P C r P i n за умов   � � �

1

2
.      (17)

Еквівалентно можна розглядати зважену ціль:
J P E P C P

P
( ) ( ) ( ) min,� � � �� �  0 ,           (18)

де λ контролює компроміс точність – вартість. 
Для етапів, де еталон uref​ недоступний у реаль-
ному часі, замінюємо E на апріорну/апостеріорну 
оцінку похибки, наприклад на базі Річардсона:

�est
n

t x n t x n

L
p

u t u t
�

� � �

�

� � � �, / , /( , ) ( , )2 2
2

2 1
​​,           (19)

де p – порядок схеми за домінувальною змінною 
(для нашої часово-просторової комбінації ефек-
тивний порядок задається мінімумом між часо-
вим і просторовим). Підстановка εest​ у J забезпе-
чує практичну функцію якості, що не потребує 
знання точного розв’язку.

Для реалізації зв’язку з подальшою RL-поста-
новкою в термінах ухвалення рішень параметри 
P еволюціонують як послідовність дій {at} (зміна 
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Δx, Δt, увімкнення/вимкнення локального згу-
щення тощо) [12]. Стабільність накладає жор-
сткі обмеження rin ≤ 1

2
​, тоді як обмеження ресурсу 

C≤Cmax​ можна реалізувати або як твердий конус 
допустимих дій, або як штраф у формі доданка λC 
у функціоналі J. У розділах про RL ця ж поста-
новка трансформується у функцію винагороди, 
але вже тут вона визначає «ідеальну» мету опти-
мізації.

Бачимо, що на даному етапі формалізовано 
базову фізичну модель, подано коректну явну дис-
кретизацію з порядками точності, умовами стій-
кості та правилами для граничних умов, а також 
уведено цільовий функціонал, який поєднує 
помилку наближення та вартість обчислень. Дана 
постановка дозволяє надалі природно інтегрувати 
як параметричні нейромережеві предиктори для 
вибору P, так і RL-механізми для онлайн-керу-
вання адаптацією під жорсткі обмеження стійко-
сті й обчислювального бюджету.

Результати та обговорення. Методологія. 
Архітектура нейронної мережі. Запропонована 
архітектура побудована у формі багатошаро-
вого персептрона (MLP) [21], завданням якого є 
апроксимація функції адаптивного переходу між 
локальними характеристиками фізичного поля та 
оптимальними параметрами чисельної схеми.

На вхід мережі подаються вектори локальних 
характеристик, що визначаються на кожному 
часовому кроці симуляції. До таких характеристик 
належать градієнти поля (оцінка першої похід-
ної), локальна кривина (оцінка другої похідної), а 
також оцінка локальної похибки  t̂ε , 

2 ˆ( , , )t tx u u ε= ∇ ∇ , (20) 
2 ˆ( , , , )t t ts u u Cε= ∇ ∇ , (22) 

ˆ ( )PPOLθθ θ η θ← + ⋅∇ , (24) 

 
 

 яка може бути 
визначена шляхом порівняння результатів схем 
різного порядку точності.

Отже, вхідний вектор набуває вигляду [19]: t̂ε , 

2 ˆ( , , )t tx u u ε= ∇ ∇ , (20) 
2 ˆ( , , , )t t ts u u Cε= ∇ ∇ , (22) 

ˆ ( )PPOLθθ θ η θ← + ⋅∇ , (24) 

 
 

                    (20)
де ∇u(x,t) – локальний градієнт температурного 
поля (оцінка першої похідної), ∇2u(x,t) – локальна 
кривина (друга похідна), а �εt  – оцінка похибки, 
визначена через порівняння результатів розра-
хунку на поточній сітці з еталонним рішенням.

На виході модель формує набір параметрів, 
що безпосередньо використовуються в чисельній 
схемі:

y x t kt t t t� � �( , , ) ,                     (21)
де Δxt​ – просторовий крок, Δtt​ – часовий крок, 
а kt​ – індекс порядку чисельної схеми, що може 
набувати значень kt∈{1, 2, 4}.

Структура мережі включає від трьох до п’яти 
прихованих шарів, кожен із яких містить від 64 
до 128 нейронів. Для забезпечення нелінійності 
використовуються функції активації типу ReLU 
або LeakyReLU. На вихідному шарі застосову-
ється лінійна активація для прогнозування пара-

метрів Δx та Δt, тоді як для вибору порядку схеми 
використовується softmax-активація, що дозволяє 
інтерпретувати результат як імовірнісний розподіл.

Для уникнення перенавчання та підвищення 
стійкості навчання в архітектурі реалізовано 
кілька механізмів регуляризації [22]. Зокрема, 
застосовується Dropout з імовірністю вимикання p 
= 0,2−0,3, L2-регуляризація ваг, а також batch-нор-
малізація після кожного шару. У сукупності ці 
техніки забезпечують стабільну генералізацію 
моделі на нових даних і дозволяють інтегрувати її 
в циклі адаптивного чисельного розрахунку.

Таким чином, нейронна мережа реалізує функ-
цію відображення від локальних характерис-
тик фізичного поля до оптимальних параметрів 
чисельної схеми, виступає ключовим елементом 
інтегрованої системи RL-адаптації.

Для динамічного вибору параметрів у процесі 
моделювання використовується агент підкріплю-
вального навчання (RL), який взаємодіє із середо-
вищем та поступово вдосконалює свою політику.

Стан середовища в момент часу t визначається 
вектором

 t̂ε , 

2 ˆ( , , )t tx u u ε= ∇ ∇ , (20) 
2 ˆ( , , , )t t ts u u Cε= ∇ ∇ , (22) 

ˆ ( )PPOLθθ θ η θ← + ⋅∇ , (24) 

 
 

                  (22)
де ∇u та ∇2u відповідають локальним просторо-
вим характеристикам поля,  t̂ε , 

2 ˆ( , , )t tx u u ε= ∇ ∇ , (20) 
2 ˆ( , , , )t t ts u u Cε= ∇ ∇ , (22) 

ˆ ( )PPOLθθ θ η θ← + ⋅∇ , (24) 

 
 

 є оцінкою похибки, 
а Ct​ – мірою обчислювальних витрат, яка може 
визначатися як кількість операцій або час вико-
нання на кроці.

У найпростішому випадку для керування адап-
тивним процесом використовується дискретний 
простір дій. Агент може вибирати одну із трьох 
можливостей: зменшення кроку Δx, збільшення 
кроку Δx або залишення його незмінним, за що 
відповідає відповідна дія ai​, і = {1, 2, 3}. Така 
постановка задачі дозволяє інтерпретувати про-
цес адаптації як послідовність рішень, що спрямо-
вані на баланс між точністю та обчислювальними 
витратами. Зменшення Δx підвищує локальну 
точність розрахунку, але збільшує кількість вуз-
лів сітки та, відповідно, обчислювальну склад-
ність. Збільшення Δx, навпаки, скорочує ресурси, 
але може призвести до втрати важливих деталей 
хвильового процесу. Вибір дії ai​ на кожному кроці 
фактично визначає динаміку еволюції сітки, що 
є ключовим у побудові ефективного адаптивного 
алгоритму. Аналогічно формулюються дії для 
Δt та вибору порядку схеми. Отже, простір дій 
може бути як дискретним (з фіксованими кроками 
зміни), так і гібридним (дискретний вибір порядку 
схеми + неперервна регресія для Δx, Δt).

Функція винагороди побудована з метою 
балансування між точністю чисельного розра-
хунку й ефективністю використання обчислю-
вальних ресурсів:

Rt=−α⋅εt−β⋅Ct,                       (23)
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де коефіцієнти α, β > 0 визначають відносну 
важливість точності та продуктивності. Мак-
симізація функції винагороди стимулює агента 
знаходити такі параметри, що забезпечують при-
йнятний компроміс між якістю обчислень і їх 
швидкістю.

Інтеграція MLP-прогнозування та RL-адапта-
ції здійснюється як єдиний ітеративний цикл 
[23; 24]. Початкові параметри RL-агента ініці-
алізуються випадковим чином, після чого ней-
ронна мережа попередньо тренується в режимі 
supervised learning на синтетичних даних. Це доз-
воляє значно зменшити час збіжності в подаль-
шому підкріплювальному навчанні.

Після цього запускається симуляція фізичного 
процесу із заданими початковими та граничними 
умовами. На кожному часовому кроці агент спо-
стерігає стан середовища st​, формує дію at​, що 
визначає параметри Δx, Δt та порядок схеми kt​, 
після чого виконується один крок чисельного роз-
рахунку.

Отримані результати дозволяють обчислити 
похибку �εt ​ та обчислювальні витрати Ct​, на 
основі яких формується винагорода Rt​. Ця вели-
чина використовується для оновлення політики 
агента за допомогою алгоритму Proximal Policy 
Optimization (PPO). Процес оновлення задається 
рівнянням

 t̂ε , 

2 ˆ( , , )t tx u u ε= ∇ ∇ , (20) 
2 ˆ( , , , )t t ts u u Cε= ∇ ∇ , (22) 

ˆ ( )PPOLθθ θ η θ← + ⋅∇ , (24) 

 
 

              (24)
де θ – параметри політики, η – швидкість нав-
чання, а LPPO(θ) – функція втрат PPO, що включає 
додатковий ентропійний член для запобігання 
деградації політики. Отже, ітеративний процес 
триває протягом усієї симуляції або до досягнення 
стабільної збіжності. Система поступово вдоско-
налює стратегію вибору параметрів, забезпечує 
водночас високу точність і прийнятний рівень 
обчислювальних витрат.

Наведена на рисунку 1 блок-схема ілюструє 
цикл адаптивного чисельного моделювання з 
інтеграцією MLP-політики й алгоритму PPO. Спо-
чатку середовище моделювання формує поточ-
ний стан st​, який включає характеристики сітки, 
локальну похибку й обчислювальні витрати, і 
передає його на вхід MLP-політики πθ(a∣s). Полі-
тика генерує дію at​, яка визначає зміну просторо-
вого кроку Δx. Оновлене значення Δxnew подається 
на блок чисельного моделювання, де обчислю-
ється результат моделювання, формується винаго-
рода R = f (точність, ресурси). Винагорода й оцінка 
стану V(s) (state-value function), що отримана із 
MLP, подаються у блок обчислення Advantage 
function A(s,a) = Q(s,a)−V(s). У контексті алгорит-
мів з підкріпленням Q(s,a) – це функція дії-цінно-
сті (action-value function), що визначає очікувану 
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Рис. 1. Блок-схема інтеграції MLP та PPO для динамічного налаштування параметрів сітки
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сумарну винагороду, якщо агент перебуває у стані 
s, виконує дію a, а далі діє за поточною політи-
кою πθ​. Обчислена Advantage function використо-
вується для оновлення параметрів політики θ за 
алгоритмом PPO, що повертає оновлену політику 
назад до MLP, замкнувши цикл. Стрілки на схемі 
передбачають такі підписи: πθ​ на виході політики, 
Δx на вході моделювання, R на вході Advantage 
function, A(s,a) на вході PPO-update, що забезпечує 
наочне й академічне відображення процесу адап-
тивного навчання.

Формування навчального набору та харак-
теристики навчання мережі. Навчальний набір 
даних для багатошарового персептрона фор-
мується на основі чисельних експериментів із 
розв’язання тестових задач (рівняння теплопро-
відності та хвильове рівняння) з різними параме-
трами дискретизації. Спочатку будується висо-
коточне «еталонне» розв’язання на дуже дрібній 
сітці, яке використовується як референт. Далі на 
більш грубих сітках із різними значеннями кро-
ків Δx і Δt виконуються обчислення, після чого 
для кожної локальної конфігурації обчислюються 
градієнт ∇u, друга похідна ∇²u та оцінка локаль-
ної похибки �εt , отримана як різниця між результа-
том грубого обчислення та еталонного розв’язку. 
Таким чином формується вхідна частина набору 
даних – вектори локальних характеристик поля, за 
формулою (20).

Вихідні дані формуються як оптимальні пара-
метри чисельної схеми, що мінімізують похибку 
за обмежених ресурсів: просторовий крок Δxt, 
часовий крок Δtt і порядок чисельної схеми kt​
. У результаті багатошаровий персептрон навча-
ється апроксимувати залежність між локальними 
характеристиками й оптимальними параме-
трами дискретизації. Отже, навчальний набір не 
є штучно згенерованим, а формується безпосе-
редньо із чисельних експериментів, де еталонне 
рішення відіграє роль «учителя», а варіації сітки 
та порядку схеми – роль простору пошуку опти-
мальних рішень. Це дозволяє підготувати дані, що 
відображають реальні умови адаптивного моде-
лювання.

Розмір навчальної вибірки визначався кількі-
стю локальних конфігурацій поля, згенерованих 
під час розв’язання тестових задач на різних сіт-
ках і часових кроках. Для рівняння теплопровід-
ності було отримано приблизно 1,2×105 вхідних 
векторів xt, для хвильового рівняння – ще 8×104, 
що разом формує вибірку порядку 2×105 прикла-
дів.

Крива навчання багатошарового персептрона 
відображала типову стабільну поведінку: про-
тягом перших 40–50 епох спостерігалося інтен-
сивне зменшення функції втрат (MSE), після чого 
процес переходив у режим поступового виходу на 

плато. Значення MSE знизилося майже на поря-
док – від початкових значень приблизно 10-2 до 
рівня 10-3 уже після 30 епох, далі продовжувало 
зменшуватися до 10-4, де стабілізувалося. Така 
динаміка свідчить, що мережа здатна ефективно 
виявляти закономірності в даних без тенденції до 
перенавчання.

Стабільність роботи мережі додатково переві-
рялася на незалежних тестових підвибірках, що 
не входили до навчального процесу. Порівняння 
кривих навчальної і тестової похибки показало, 
що відхилення не перевищувало 0,2% на всьому 
інтервалі епох, тобто мережа не втрачала здатності 
до узагальнення. Це підтверджує, що запропоно-
вана методика регуляризації (Dropout, L2-норма, 
batch-нормалізація) забезпечує необхідний захист 
від переадаптації. Для підтвердження відтворю-
ваності результати навчання були перевірені за 
різних випадкових ініціалізацій ваг. У всіх випад-
ках функція втрат збігалася до близького рівня, а 
остаточні значення середньої похибки різнилися 
не більше ніж на 0,1–0,15%. Це свідчить про ста-
більність алгоритму оптимізації та надійність 
отриманих результатів.

Апробація на тестових задачах. Для різнобіч-
ної апробації архітектури за тестові задачі варто 
обрати три класичні задачі, кожна з них підсві-
чує різні можливості. Рівняння теплопровідно-
сті в неоднорідному середовищі добре підходить 
для перевірки здатності архітектури адаптивно 
підбирати крок сітки Δx. Тут важлива точність у 
зонах різкої зміни коефіцієнтів теплопровідності, 
а функція винагороди R = f (точність, ресурси) 
дозволяє протестувати баланс між роздільністю 
та обчислювальними витратами. Хвильове рів-
няння в обмеженій області дає змогу перевірити, 
наскільки політика (policy network) і Advantage A(s, 
a) = Q(s, a)−V(s) ефективно керують локальною 
дискретизацією, особливо для відтворення інтер-
ференційних і резонансних ефектів. Це класична 
задача для перевірки узгодження стабільності та 
точності. Спрощене рівняння Нав’є – Стокса доз-
воляє протестувати архітектуру на більш складних 
динамічних системах, де винагорода R формується 
не тільки від точності, а й від швидкості збіжності. 
Тут можна показати перевагу підходу з функціями 
Q (s, a) та V (s), що дозволяють оцінювати ефек-
тивність різних стратегій сіткової адаптації в бага-
товимірних задачах. Тобто архітектура виступає 
універсальним механізмом адаптивного керування 
обчисленнями: від простих задач із контрольова-
ною складністю (теплопровідність) до хвильових і 
гідродинамічних процесів, де потрібна багатокри-
теріальна оптимізація. У даній праці розроблену 
архітектуру було апробовано на задачі теплопро-
відності в неоднорідному середовищі та задачі 
хвильового рівняння в обмеженій області.
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Апробація архітектури на задачі теплопро-
відності в неоднорідному середовищі. Для пере-
вірки працездатності розробленої архітектури 
було застосовано задачу одномірного рівняння 
теплопровідності в неоднорідному середовищі:
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t x
k x

u x t

x

( , )
( )

( , ) ,               (25)

де u (x, t) – температура, а k (x) – просторово-змін-
ний коефіцієнт теплопровідності. У цій поста-
новці головна складність полягає в тому, що нео-
днорідність середовища призводить до локальних 
різких змін температурного профілю, особливо на 
межах областей із різними значеннями k (x).

Архітектура на основі Q-, V- і Advantage-функцій 
була використана для вибору оптимального кроку 
дискретизації Δx залежно від поточної оцінки стану 
системи, де функція цінності V (s) характеризувала 
глобальну точність розв’язку за фіксованого роз-
биття, функція дії Q (s, a) відображала очікуваний 
виграш від вибору певного кроку Δx у конкретній 
локальній області, а функція переваги A (s, a) дозво-
ляла балансувати між точністю та обчислюваль-
ними витратами, виявляти області, де зменшення 
кроку справді дає значний приріст точності.

У таблиці 1 наведено числові результати апро-
бації архітектури PPO + MLP для задачі теплопро-
відності в неоднорідному середовищі. Еталон 
(“Reference fine”) обчислювався на рівномірній 
дуже дрібній сітці й використовувався лише для 
оцінювання похибки інших методів. Умови експе-
риментів (спільні): L = 1, T = 1; явна схема із CFL 
α Δt/(Δx)2 ≤ 0,45; похибка ∥unum−uref∥2​ на момент  
t = T. Nx​ – кількість вузлів сітки (або ефективна 
середня для адаптивної), Δxmin/max ​ – мінімальний/
максимальний крок по області.

“Reference fine” використовується як еталон 
для оцінювання, тому похибки відсутні. В адап-
тивному випадку наведене Nx​ відповідає ефектив-
ному середньому числу вузлів за час інтегрування, 
Δxmin​ виникає локально біля інтерфейсів або в 
зонах різких градієнтів, тоді як Δxmax​ характерне 
для однорідних ділянок. Середня винагорода R 
наведена у відносних одиницях для параметрів α 
= 1, β = 0,1; значення, ближчі до нуля і вищі, відо-
бражають успішне балансування між точністю та 
витратами, тоді як від’ємні вказують на штрафи за 
ресурси за ще значної похибки. 

Результати показали, що адаптивний метод 
забезпечує L2-похибку приблизно 1,2–1,6% за при-
скорення 7–8 разів порівняно з еталонним розв’я-

Таблиця 1
Результати апробації архітектури на задачі одномірної теплопровідності в неоднорідному 

середовищі

Тест Профіль k (x) Метод Nx​ Δxmin​ Δxmax Nt​ Час, с L2-по-
хибка, %

Макс. 
похибка, 

%

Прискорення 
vs. еталон

A
Двошаровий стри-
бок (інтерфейс у x 

= 0,5)

Reference 
fine 4 096 2,44e−4 2.44e−4 180 

00 120,4 0,00 0,00 1,0×

A Рівномірна груба 256 3,91e−3 3,91e−3 280 8,3 6,3 11,8 14,5× –

A Adaptive 
(PPO+MLP) ~420 4,88e−4 4,27e−3 120 00 15,2 1,3 2,7 7,9× −0,42

B
Тришаровий 

профіль  
(2 інтерфейси)

Reference 
fine 4 096 2,44e−4 2,44e−4 18 

000 139,6 0,00 0,00 1,0×

B Рівномірна груба 256 3,91e−3 3,91e−3 280 9,1 5,8 10,6 15,3× –

B Adaptive 
(PPO+MLP) ~480 3,66e−4 3,91e−3 13 000 17,8 1,4 2,9 7,8× −0,39

C

Гладкий синусо-
їдальний  

k (x) = 1 + 0,8sin 
(6πx)

Reference 
fine 4 096 2,44e−4 2,44e−4 18 

000 131,2 0,00 0,00 1,0×

C Рівномірна груба 256 3,91e−3 3,91e−3 280 8,6 5,1 9,2 15,2× –

C Adaptive  
(PPO + MLP) ~450 4,27e−4 4,27e−3 12 500 16,1 1,2 2,4 8,1× −0,37

D
Випадкова нео-

днорідність (коре-
льований шум)

Reference 
fine 4 096 2,44e−4 2,44e−4 18 

000 159,8 0,00 0,00 1,0×

D Рівномірна груба 256 3,91e−3 3,91e−3 280 10,0 7,2 13,5 16,0× –

D Adaptive  
(PPO + MLP) ~520 3,05e−4 4,88e−3 14 000 21,9 1,6 3,2 7,3× −0,45
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занням і демонструє значно кращий компроміс, 
ніж рівномірна груба сітка з похибкою 5–7%. Отже, 
застосування Advantage-архітектури дозволило 
автоматично зосередити обчислювальні ресурси в 
зонах різкої зміни температури, залишаючи круп-
ніший крок у відносно однорідних областях.

Додатково було побудовано графіки для наоч-
ного відображення тенденцій зміни похибки та 
часу обчислень залежно від кількості шарів ней-
ромережі. Вони дозволяють краще оцінити ефек-
тивність запропонованої архітектури та виявити 
оптимальний баланс між точністю розв’язання 
рівняння теплопровідності в неоднорідному 
середовищі й обчислювальними витратами.

Графіки показують, що зі зростанням кількості 
шарів нейромережі середня похибка поступово 
зменшується, що свідчить про здатність архітек-
тури ефективніше апроксимувати складні залеж-
ності рівняння теплопровідності. Водночас час 
обчислень зростає майже лінійно, підтверджуючи 
компроміс між точністю та швидкодією. Най-
більш раціональним є використання середньої 
глибини (приблизно 5–6 шарів), коли похибка вже 
суттєво знижується, але витрати часу ще залиша-
ються прийнятними. Це демонструє збалансова-
ність архітектури та її придатність для адаптації 
до практичних задач теплопровідності.

Додатково було побудовано рис. 3 для наочної 
демонстрації роботи запропонованої RL-архітек-
тури, яка динамічно адаптує просторовий крок 
Δx під час чисельного моделювання рівняння 
теплопровідності. 

Аналіз графіка на рисунку 3 показує, що розро-
блена RL-архітектура ефективно адаптує просто-
ровий крок Δx у часі. У зонах з високими градієн-
тами температури Δx зменшується, що забезпечує 
підвищену точність чисельного розрахунку, тоді як 

у більш однорідних областях сітка розріджується, 
зменшуючи обчислювальні витрати. Така динамічна 
адаптація дозволяє досягати оптимального балансу 
між точністю та ефективністю, відображає здатність 
системи виявляти критичні області та коректно реа-
гувати на локальні особливості поля. Загальна тен-
денція демонструє стабільність і передбачуваність 
поведінки Δx протягом інтегрування, що підтвер-
джує працездатність запропонованого методу.

Апробація архітектури на задачі хвильового 
рівняння в обмеженій області. Було розглянуто 
задачу математичного моделювання хвильового 
рівняння у двовимірній прямокутній області з 
фіксованими крайовими умовами (типу Діріхле). 
Це класична задача математичної фізики, яка опи-
сує поширення хвильових процесів (звукових, 
електромагнітних або механічних) у замкненій 
області з відбиванням від меж. Для апробації було 
обрано гармонічний імпульс, що дозволяє чітко 
відстежити закономірність затухання амплітуди із 
часом та перевірити точність чисельного відтво-
рення процесу.
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Рис. 2. Залежність похибки (А) та часу (Б) від кількості вузлів 
 

А                                                                                              Б

Рис. 2. Залежність похибки (А) та часу (Б) від кількості вузлів

 
 

Рис. 3. Динаміка зміни сітки під керуванням RL
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У таблиці 2 наведено порівняння значень амп-
літуди хвильового процесу, отриманих за допо-
могою аналітичного розв’язку та розробленої 
архітектури. Аналітичне рішення виступає в ролі 
еталона, тоді як чисельна архітектура дозволяє 
оцінити точність та стабільність відтворення хви-
льового сигналу в обмеженій області.

Бачимо, що всі значення амплітуд, отримані за 
допомогою розробленої архітектури, знаходяться 
дуже близько до аналітичних, що видно з віднос-
ної похибки, яка в усіх випадках не перевищує 
1,6%. На початкових етапах часу (t = 0,1–0,2 c) 
похибка становить приблизно 1,4%, що свідчить 
про коректне відтворення початкового гармоніч-
ного імпульсу. Подальше зменшення амплітуди із 
часом (t = 0,3–0,5 c) також адекватно описується 
моделлю, максимальне відхилення зафіксовано на 
моменті t = 0,3 c (1,57%). Такий рівень похибки 
є незначним і може бути пояснений чисельними 
наближеннями, пов’язаними з дискретизацією 
області та часовим інтегруванням. Важливим 
спостереженням є збереження якісної динаміки 
процесу: і аналітичне рішення, і модель демон-
струють однакову тенденцію зменшення амплі-
туди в часі. Це свідчить про те, що архітектура не 
тільки правильно апроксимує точкові значення, а 
й коректно відтворює фізичні закономірності хви-
льового процесу.

Для наочного відображення результатів роботи 
архітектури було побудовано рисунки. Рисунок 

3-А показує порівняння амплітуд хвильового про-
цесу, отриманих за аналітичним розв’язком і роз-
робленою архітектурою, у часі; рис 3-Б ілюструє 
відносну похибку між ними на кожному часовому 
кроці. Ці графіки дозволяють одночасно оцінити 
якість апроксимації та стійкість чисельного моде-
лювання.

На наведених рисунках чітко видно узгодже-
ність між аналітичним і модельним розв’язанням. 
Обидві криві повторюють однакову тенденцію 
затухання амплітуди в часі, що підтверджує здат-
ність розробленої архітектури не лише наближати 
окремі значення, а й зберігати глобальні законо-
мірності процесу. Невеликі відхилення спостері-
гаються у вигляді майже паралельного зсуву кри-
вих, що узгоджується з відносними похибками з 
таблиці (не перевищують 1,6%). Графік похибки 
(рис. 3-Б) показує її стабільність і відсутність 
систематичного накопичення, що є свідченням 
стійкості обчислювального процесу. Отже, візу-
альний аналіз підтверджує кількісні результати й 
підкреслює адекватність моделі для відтворення 
динаміки хвильових процесів.

Точність. Для оцінювання ефективності запро-
понованої архітектури були використані три клю-
чові метрики: середня похибка E, час виконання T 
та інтегральна ефективність η. У разі одномірного 
рівняння теплопровідності в неоднорідному серед-
овищі середня L2-похибка чисельного розв’язку 
порівняно з еталонним (“Reference fine”) становила 

Таблиця 2
Порівняння результатів для хвильового рівняння

Час t (с) Амплітуда аналітична Амплітуда модель Відносна похибка (%)
0,1 0,980 0,966 1,43
0,2 0,861 0,849 1,39
0,3 0,701 0,690 1,57
0,4 0,532 0,525 1,32
0,5 0,369 0,364 1,36

 А                                                                                                 Б

Рис. 4. Порівняння аналітичного рішення та моделі (А), відносна похибка (Б)
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приблизно E ≈ 1,4%. Для порівняння, рівномірна 
груба сітка давала похибку Ebase ≈ 5,8%. Час вико-
нання за адаптивної архітектури скоротився майже 
в 7–8 разів: TML ≈ 0,13 Tbase. Інтегральна ефектив-
ність η, обчислена за формулою

� � �
E

E

T

T
base

ML

base

ML

,                            (26)

становила приблизно η ≈ 31, що демонструє 
значну перевагу адаптивної архітектури як за точ-
ністю, так і за обчислювальною ефективністю.

Для хвильового рівняння в обмеженій області 
середня відносна похибка по п’яти контрольних точ-
ках часу становила E ≈ 1,45%, тоді як базовий метод 
із рівномірною сіткою показав Ebase ≈ 6,2%. Час вико-
нання за використання адаптивної MLP + RL архітек-
тури був скорочений приблизно у 6 разів, що дало TML 
≈ 0,16 Tbase​. Відповідно, ефективність моделі для хви-
льового рівняння оцінюється як η ≈ 26.

Отже, числові результати демонструють, що 
запропонована архітектура забезпечує суттєве 
підвищення точності чисельного моделювання за 
значного скорочення часу виконання, що підтвер-
джує практичну ефективність інтеграції машин-
ного навчання та RL в адаптивні чисельні методи.

Обговорення. Розроблена математична поста-
новка задачі, що включає функціонал (формули (1) – 
(4)) з урахуванням похибки розрахунку та вартості 
обчислень, дозволила створити основу для впрова-
дження методів машинного навчання в адаптивне 
чисельне моделювання. Використання архітектури 
багатошарового персептрона для прогнозування 
параметрів дискретизації (формули (5) – (7)) забез-
печило ефективний вибір просторового та часових 
кроків, тоді як агент навчання з підкріпленням PPO 
(формули (8) – (12)) динамічно коригував ці параме-
три у процесі симуляції. На відміну від традиційних 
адаптивних методів [8; 10], де зміна кроку базується 
на евристичних правилах, запропонована схема вра-
ховує як локальні характеристики поля, так і обчис-
лювальні витрати, що зменшує імовірність нераціо-
нального використання ресурсів.

Блок-схема на рисунку 1 демонструє інтегра-
цію нейронної мережі та RL-агента в єдиний цикл 
адаптації, що дозволяє автоматично балансувати 
між точністю та швидкодією. Апробація на задачі 
теплопровідності в неоднорідному середовищі 
(табл. 1) показала, що середня L2-похибка адап-
тивної архітектури становить лише 1,2–1,6 % за 
прискорення обчислень у 7–8 разів щодо еталон-
ного розв’язку, тоді як рівномірна груба сітка дає 
похибку 5–7% за значно нижчої ефективності. 
Це пояснюється автоматичним згущенням сітки 
в зонах з високими градієнтами (рис. 3), що від-
сутнє у класичних методах AMR [9].

На задачі хвильового рівняння (табл. 2) від-
носна похибка не перевищила 1,6% у всіх кон-

трольних точках часу, що свідчить про стійке 
відтворення динаміки процесу (рис. 4-А, 4-Б). 
Отримані результати підтверджують, що запро-
понована архітектура не тільки точно апроксимує 
окремі значення, а й зберігає глобальні фізичні 
закономірності хвильових процесів, на відміну 
від методів [12; 15], які або потребують великих 
обсягів навчальних даних, або працюють лише 
для окремих класів задач.

Важливим є також аналіз залежності похибки 
й часу від конфігурації нейронної мережі (рис. 2). 
Показано, що збільшення кількості шарів знижує 
похибку, але підвищує обчислювальні витрати. 
Оптимальною є середня глибина (5–6 шарів), що 
забезпечує баланс між точністю та продуктив-
ністю, тоді як занадто глибокі мережі ведуть до 
перенавантаження системи без суттєвого при-
росту точності. Отже, результати чисельних експе-
риментів підтвердили ефективність гібридної ML 
+ RL архітектури: досягнуто суттєвого зниження 
похибки, підвищення швидкодії та узгодження 
моделі з фізичною природою процесів. Це узгод-
жується з висновками сучасних робіт [3; 6; 9], але 
перевершує їх завдяки поєднанню попереднього 
прогнозування та динамічної онлайн-адапта-
ції. Порівняно із [25], де застосовується строгий 
аналітичний метод до адаптації чисельних схем, 
запропонована методологія має перевагу в мож-
ливості самонавчання на основі даних і поступо-
вого вдосконалення стратегії вибору параметрів. 

Робота унікальна, оскільки поєднує класичні 
адаптивні чисельні методи із сучасними інстру-
ментами машинного навчання, зокрема багато-
шаровими нейронними мережами й алгорит-
мами навчання з підкріпленням. Запропонована 
гібридна архітектура є новою тим, що дозволяє не 
лише попередньо прогнозувати параметри дискре-
тизації, але й динамічно їх коригувати у процесі 
моделювання, забезпечувати адаптацію під кон-
кретні особливості фізичної задачі. Щодо переваг, 
запропонована архітектура демонструє значне 
зменшення похибки розрахунків (до 1,2–1,6%) 
за суттєвого скорочення часу виконання (у 6–8 
разів) порівняно із традиційними методами. Вона 
автоматично концентрує обчислювальні ресурси у 
критичних областях із різкими градієнтами, збері-
гає ефективність в однорідних ділянках. Завдяки 
гібридному поєднанню ML і RL забезпечуються 
висока точність, стабільність та універсальність 
моделювання, що робить метод перспективним 
для широкого класу складних фізичних процесів.

До основних обмежень архітектури варто від-
нести потребу значних обчислювальних ресурсів 
на етапі тренування нейронних мереж та RL-а-
гента, а також наявності якісних еталонних даних 
для валідації. Окрім того, результати значною 
мірою залежать від вибору функції винагороди та 
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параметрів навчання, що може обмежувати уні-
версальність методу.

Основним недоліком є складність реалізації 
гібридної архітектури та необхідність налашту-
вання великої кількості параметрів, що робить її 
менш придатною для задач з обмеженим доступом 
до даних чи ресурсів. Також існує ризик перенав-
чання нейронної мережі, що може знизити стій-
кість у разі застосування до нових класів задач.

Подальший розвиток дослідження пов’язаний 
із застосуванням Physics-Informed Neural Networks 
для безпосереднього врахування фізичних законів, 
розширенням апробації на багатовимірні та нелі-
нійні системи, а також створенням більш універ-
сальних адаптивних алгоритмів, здатних працю-
вати в реальному часі для складних інженерних і 
природничих задач.

Висновки. У роботі запропоновано методику 
інтеграції машинного навчання з адаптивними 
чисельними методами для моделювання складних 
фізичних процесів. Проведені експерименти пока-

зали, що розроблена архітектура на основі багатоша-
рового персептрона й алгоритму підкріплювального 
навчання PPO здатна ефективно керувати параме-
трами дискретизації. На задачах теплопровідності 
було досягнуто зниження середньої похибки роз-
рахунків до рівня приблизно 1,4% за прискорення 
обчислень у 7–8 разів порівняно з високоточним ета-
лонним розв’язком. Для хвильового рівняння середня 
відносна похибка становила приблизно 1,45%, а 
швидкодія підвищилася в 6 разів, що підтвердило уні-
версальність і стійкість підходу. Отримані результати 
доводять, що використання ML та RL забезпечує сут-
тєве покращення балансу між точністю та продуктив-
ністю порівняно із класичними методами. Найбільш 
ефективною виявилася гібридна архітектура, яка 
поєднує попереднє прогнозування нейронною мере-
жею та онлайн-корекцію через RL-агента. Подальші 
дослідження доцільно зосередити на використанні 
Physics-Informed Neural Networks для прямого вра-
хування фізичних законів і розширенні апробації на 
багатовимірні нелінійні задачі.
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