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We study the Timoshenko model of bending beam vibrations, that in-
cludes the beginning from a brief general consideration and the fast tran-
sition from n-dimensional Euclidean space to 4-dimensional space with 
respect to spatial coordinates and time. As a result, the Timoshenko equa-
tion is obtained on the basis of a mathematical approach, without a cor-
rection coefficient (shear coefficient) as a special case of a more general 
our extended refined equation. We investigate the problem of the effect 
of liquid, as a special case of an elastic base, on shear in Timoshenko 
elastic plate. It is shown that any media contacting with the plate reduce 
the shear effect. The violation of continuity is noted, which has not been 
considered previously. The works based on the Timoshenko model are 
presented for a beam on an elastic base. In the case of a rectangular 
change in the cross section, another matching problem immediately 
arises, connected with appearing reflected and transmitted waves. From 
the solvability of the problem for the phase velocity in the case of short 
wavelengths (high frequencies), the yield to the characteristic is studied 
and it is shown that in connection with the violation of continuity, the 
applicability of the classical theory takes place at wavelengths of more 
than 5 thicknesses. The problem of elastic plates floating on a liquid layer 
is studied in detail, using various theories. Variational formulations with-
out taking into account the violation of continuity are considered and 
commented, the separation of variables in the Timoshenko equation is 
considered. 
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Досліджено модель Тимошенка згинних коливань балки, що вклю-
чає спочатку загальні міркування і перехід від n-мірного евклідова 

простору nR  до 4-мірного простору відносно просторових коорди-

нат 1 2 3, ,x x x  і часу t . На основі математичного підходу рівняння Ти-

мошенка одержано без коректуючого коефіцієнта (коефіцієнт зсуву) 
як окремий випадок більш загального розширеного рівняння. Дослі-
джено задачу впливу рідини як окремий випадок пружної основи в 
пластині Тимошенка. Показано, що будь-яке середовище, що кон-
тактує з пластиною нівелює ефект зсуву. Відмічено порушення су-
цільності, яке раніше не розглядалося. Дослідження, основані на мо-
делі Тимошенка, представлялись для балки на пружній основі. У ви-
падку прямокутного виду поперечного перерізу виникає інша за-
дача, пов’язана з появою відбитих хвиль. З розв’язку задачі до-
сліджується фазова швидкість у випадку коротких довжин хвиль 
(високі частоти), виявлено, що у випадку порушення суцільності за-
стосування класичної теорії обмежено довжиною хвиль, що переви-
щує 5 товщин балки. На основі різних теорій детально вивчено за-
дачу про пружні пластини, що плавають на рідкому шарі. Опису-
ються і обговорюються варіаційні формулювання без урахування 
порушення суцільності, розглядається відокремлення змінних в рів-
нянні Тимошенка.  
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1. Introduction 

The Cauchy-Poisson method was proposed 

considering the bending vibrations of an elastic 

beam-plate based on the equations of elastody-

namics (Cauchy, 1828) [1], (Poisson, 1829) [2]. 

A generalization of the Cauchy-Poisson method 

to n -dimensional Eucledian space was ob-

tained in (Selezov, 2000) [3]. The violation of 

continuity was shown in (Selezov, 2018) [4].  

The violation of continuity in the Timo-

shenko model has been not investigated in all 

previous considerations and it is an absolutely 

new problem under consideration. That is why, 

a numerous of traditional investigations of the 

Timoshenko equation is not considered here. 

Moreover, these investigations are else consid-

ered in detail in a book dedicated to the Timo-

shenko (P: Statement of the problem Grigolyuk 

and Selezov, 1973) [5]. 

The paper consists of some points pre-

sented below. Statement of the problem in Eu-

cledian space presents the problem in Eucledian 

space nR  represented by a finite system of par-

tial differential equations. Corresponding 

boundary-value problem and some assamptions 

are considered; Extended refined equation in 4- 

th dimensional space presents the problem in 4-

dimensional Eucledian space and an extended 

generalized refined equation including the Ti-

moshenko equation as a partcular case; Viola-

tion of continuity and the effect of elastic foun-

dation are noted and commented and the influ-

ence of the elasticity of the base on processes is 

investigated; Wave propagation in elastic float-

ing plate presents the problem of wave propa-

gation in a floating elastic plate; On variational 

formulations without violation of continuity 

considers variational principles without the vi-

olation of continuity and an asymptotic ap-

proach which are based on the continuity of 

elastic media; Separation of variables in the Ti-

moshenko equation shows the application of 

the method of separation of variables. 

2. Statement of the problem in euclidean 

space 

We consider in Eucledian space nR with 

coordinates , 1,qx q n  a mathematical model 

represented by a finite system of partial differ-

ential equations for which a boundary-value 

problem is posed in a domain 0, ,mX     

0mX   bounded by hypersurfaces (the index is 

fixed):

 1 2 1 1 1: , , , , , , ,

0, .

n s s n

n s s s

x R x x x x x

x h x h

        
   

     

 

We assume that hypersurfaces s sx h  are 

removed from the middle hypersurface 0sx   

and it is considered the composition with re-

spect to 0sx  . The case is considered when 

conditions are given on hypersurfaces 
s sx h .   

It is assumed that the model depends on a 

finite number   of parameters ,r  1,r  . 

Formally, such a model can be defined as a sys-

tem k  of differential equations in partial deriv-

atives of p -th order with k  unknowns 
iu  

 1,i k  and n  arguments (Dunford & 

Schwartz,  

1969) [6]

  1 1

1 1,1 , 1, 1...1 , ... 1,..., ; ,..., ; ,..., ;... ,..., ; ,..., ,..., ,
P times P times

n n

i k k n k n n iF x x u u u u u u P x x

 
   

 
 (1) 

 1,j k p   in  . 

The following system of boundary conditions on hypersurfaces 
s sx h  , 

s sx h  is defined 

 
 1

1

1 1,1 , ... 1,..., ; ,..., ; ,..., ; , ,
P times s s

n

j k k n n j

x h

f x x u u u u Q






 

 
   

 

,    1,j k p  . (2)
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Here, the index after the “comma” denotes 

differentiation with respect to the correspond-

ing coordinate, in the general case p n  it de-

pends on all possible partial derivatives up to 

the p -th order inclusively, the position of the 

hypersurface may depend on 
iu  and their deriv-

atives. The solution of the boundary value prob-

lem (l), (2) consists of determination of the 

functions 
iu  transforming equations (1) into 

identities, and in selection of a set of these func-

tions those functions that satisfy conditions (2). 

3. Extended refined equation in 4- th 

dimensional space 

Further we consider 4-th dimensional space 

with respect to spatial coordinates 
1

x ,
2

x ,
3

x  and 

time t . When constructing a generalized equa-

tion, dimensionless quantities are introduced, 

taking thickness 2 h (m), shear wave velocity 
sc  

(m / s), and elastic medium density   (kg / m) 

as characteristic quantities 

 * 1

2
k ku u

h
 ,      * *

1 2 1 2

1
, ,

2
x x x x

h
 ,  

 *

2

sc
t t

h
 ,   * 1

q q
G

 , 

 * 1

2
h  ,   2

s

G
c


 . 

In the study of wave propagation, dimen-

sionless quantities are introduced: * 1

2
l l

h
  is 

the wavelength, 
*

s

c
c

c
 is the phase velocity. 

The extended differential equation for the 

transverse coordinate 
3 0u w  has the form (as-

terisks are omitted) 

2
2 2

12

K

a
t

 
     

 

 

2 4
2

2 32 4

TM

a a
t t

 
   

  
 

2
2 2 2 2 2

1 2 2
b b

t


       


 

4 6
2

3 44 6
,

TMC

b b
t t

 
   

  
 

2
2 2 2

0 1 2 32
1

TM

w d d d
t

 
        

 

 

  
2 4

2

4 52 4

TMC

d d q q .
t t

  
   

  
 (3) 

In (3), the following notations are accepted: 

 0 1,w x t  transverse deviation (deflection), t  is 

a time,  1 2q q  transverse load, 

An operator with index K corresponds to 

the Bernoulli-Euler equation (extended to 

plates by Kirchhoff). The operator with the TM 

index corresponds to the Timoshenko equation 

(extended to plates by Ufland and developed by 

Mindlin). The Rayleigh equation is included in 

the operator TM with 
3 0a  . An operator with 

the TMC index corresponds to the extended 

equation (constructed by Selezov). It follows 

from the above analytical construction, as a spe-

cial case, the Timoshenko equation, but without 

the introduction of a correction parameter (the 

shear coefficient). 

The Timoshenko equation is of hyperbolic 

type as a generalization of 4-th order parabolic 

equation, rather than 2-th order equation, which 

only in this case has always been generalized 

before. 

With increasing frequencies. those. as the 

wavelength decreases and the characteristic is 

reached, violation of continuity occurs in ac-

cordance with the Timoshenko model. 

When deriving the Timoshenko equation, 

the slope of the tangent to the bend curve is pos-

tulated. those it is represented in the form 

w x       where   is the bending defor-

mation,   is the shear deformation. At high fre-

quencies and sharp inhomogeneities, this will 

manifest itself. 

4. Violation continuity and the effect  

of elastic foundation 

From the analysis (Selezov, 2018) [4], it 

was found that the Timoshenko model is appli-

cable at wavelengths   of more than five thick-

nesses h , that is, 5
h


  when the influence of 

the thickness shear is already small and there is 

no discontinuity. We considered a beam-strip of 

an elastic plate, for which they were derived 

strictly mathematically, following Cauchy and 
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Poisson. refined equations, including the Timo-

shenko equation as a special case. 

The effect of an elastic base was investi-

gated in (Selezov and Korsunsky, 1991) [7], in 

which it was shown that this reduces the effect 

of thickness shear in the Timoshenko model. 

Note that water can also be considered as an 

elastic base. 

For the first time, a beam on an elastic foun-

dation was examined by Timoshenko (Timo-

shenko, 1956) [8]. After his emigration to 

America, works appeared on the effect of an 

elastic foundation on the shear deformation in 

his equation. For example, in (Achenbach et al., 

1967) [9], the propagation of free elastic waves 

in a plate lying on an elastic half-space was 

studied. It was shown in (Yu, 1960) [10] that in 

a three-layer plate, the effect of shear and iner-

tia of rotation of the outer plates relative to their 

middle surfaces is negligible. In (Lloid and Mi-

klowitz, 1962) [11], vibrations of an elastic 

plate on an elastic base are considered. 

In well-known works considering the Ti-

moshenko beam of variable cross-section, no 

conditions were imposed on the value of the 

permissible change in the cross-section, which 

can lead to the violation of continuity. we pre-

sent only one of them (Shubov, 2002) [12]. 

5. Wave propagation in elastic floating plate 

We consider the problem of the propaga-

tion of plane unsteady bending waves in  elastic 

plate located on a liquid surface of finite depth 

d , assuming that  in time 0t   a stationary nor-

mal load at a point is applied to the surface 

   0 1 2p p p x p t . The plate bending motions 

are described by a refined theory, taking into 

account the inertia of rotation and transverse 

shear deformation (Grigulyuk and Selezov, 

1973) [5], and the fluid is considered compress-

ible isentropic. The corresponding initial-

boundary-value problem is formulated to find 

solutions to the system 

  2

1xx x ttD k Gh w I      , (4) 

 
 2

2 2 10
,

xx x

t ttx

k Gh w

w p hw



   


 

   
 (5) 

 2

0 0xx zz ttc     , (6) 

     2 , ; , 0 ; 0, .x z d t         

Under boundary conditions 

 
0
; 0t z zz z d

w  
 

   (7) 

and initial conditions for 0t   

 
0; 0; 0;

0; 0; 0.

t

t t

w

w

 

 

  

  
 (8) 

The boundary conditions (7) express the 

equality of the vertical velocity components of 

the plate and the liquid at the interface and the 

impermeability condition at the bottom. Value 

 ,x t  is the angle of rotation of the plate;   

is the potential of fluid velocities, 
1  and 

2  

are the densities of the plate and fluid, 

 2 2 2 0,5k v v     is the shear coeffi-

cient, 3 12I h  moment of inertia of the cross 

section, 
0c  the speed of sound and fluid. In (4) 

(8) and further, dimensionless quantities are in-

troduced by the formulas 

   * * * * 1
, , , , , , , ,x z w d x z w h d

h
  

* gh
t t

h
 ,   * 0

0

1

p
P

gh
 , 

* *0
0 , ,

c
c

gh h gh


   

* * *

3 4

1 1

, ,
I D g

l D G
h gh gh 

   , 

 * *

1

, 1, 2i

i

i
gh

 
 

 
   . 

The above statement (4)-(8) also includes 

special cases. So, for an incompressible fluid  

(
0c  ), instead of the wave equation (6), the 

Laplace equation 0xx zz    is solved; plate 

motion is described by the classical Kirchhoff 

theory: 

 1 2 2 0xxxx tt t z
Dw w w p   


    ; (9) 

the movement of the plate is described by the 

equation taking into account only the inertia of 

rotation: 

 

1

1 2 2 0
,

0;

xxxx ttxx

tt t z

x

Dw Iw

hw w p

w



   





 

   

 

 (10) 

the movement of the plate is described by the 

equation, taking into account only the trans-

verse shear strain 
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1
12

2 22 0

2

1 0;

0.

xxxx ttxx tt

xx t z

xx x

D
Dw w hw

k G

D
w p

k Gh

D k Gh w




  

 



  

 
      
 

  

  (11) 

To solve this problem, the integral Fourier 

transforms in coordinate x  and Laplace trans-

forms in time t  are applied: 

 

   

   
0

;

.

i x

st

F f x e dx

f s f t e dt




















 

The transition from the space of Laplace 

images to the space of originals in some cases 

is carried out by (Deutsch, 1956) [13]. In other 

cases, the original is found by casting an inte-

gral of the Riemann-Mellin type. 

    
1

2

c i

st

c i

f t f s e ds
i









  , 

to the Fourier transform (Krylov and Skoblya, 

1974) [14] 

        Re Im
2

ct
i te

f t f s f s e d 






  
  , 

where s c i  . 

In the general case, the solution of the prob-

lem (4)-(11) under consideration has the form 

   

 
1 2 0 10

2 4 2 2

2 1 2 3

.
4 2

c i i x st

c i

P p s e d dsp
w

i C s C s C

   

 





 

 


 

  (12) 

The choice of other parameters is deter-

mined by the model.  

So, for the Kirchhoff model (9) we have 

1 2 1 0 2 01, h cth d        , 

 2 4

1 2 3 0 2 20, 1 2,C C C D       . 

In the case of the Timoshenko plate (4), (5) 

22

1
1 2 2

1
s ID

k Gh k Gh


    , 

2 1
2 0 0 12

; 1
I

cth d C
k G h

 
  

 
   

 
; 

2
22

2 1 1 02 2
1

D
C h I

k Gh k Gh


   

    
        

   

 

2

2 0 22
1 2 ;

D
cth d

k Gh


  

 
   

  
 

 
2

4

3 0 2 22
1

D
C D

k Gh


   

  
    

  
. 

For the inertia of rotation model 

 2

1 2 1 1 0 2 01; I h cth d           ; 

 2 4

1 2 3 0 2 20, 1 2,C C C D       . 

For the transverse shear strain model (11) 

 

 

2

1 2

2

2 1 0 2 02

1 ;

1 ,

D
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D
h cth d
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1 2

2
2 4

3 0 2 2 22

0, 1 2,

1 .
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D
C D
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The normal component of the tensor is 

  2xx

u w
G

x z
  

 
  

 
, (13) 

where the components u  and w  of the dis-

placement vector has the form (Grigolyuk and 

Selezov, 1973) [5]: for the Kirchhoff model 

w
u z

x


 


, and in other cases u z . Then ex-

pression (13), taking into account (12), is re-

duced to the form 

 

 

   

 

0

2

2

1 2 0

4 2 2

2 1 2 3

2

4

.
2

xx

c i i x st

c i

zp G

i

P P s e d ds

C s C s C








   







 

 


 


 

 

 (14) 

For an incompressible fluid, the transition 

from the space of Laplace images to the space 

of originals is carried out according to 

(Deutsch, 1956) [13] based on the convolution 

theorem. In this case, we have the following ex-

pressions: 
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2 32 2

3 3 0
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2 2 2 2 2

0
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2 3 0
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2
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t
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p s
C C C p t s s s s d

s C s C
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where 2 2 2

1,2 2 2 3s C C C   . 

Let us consider the case when the load in 

spatial and temporal coordinates changes ac-

cording to the laws 

    2 2 2

1 0 0p x x x x  ; 

     2 , 0 ; ,
b t a

p t t a t a e t a
 

    . 

Then, for an incompressible fluid, from 

(14), taking into account (15), we obtain the ex-

pression of the normal component of the stress 

tensor in particular cases (9)-(11) 

     3

0 1

20

2
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zp G P f t
x d
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1 0
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Numerical calculations were performed at 

the normal stress 
xx  following parameter val-

ues: 
1 910  kg/m3; 

2 1000  kg/m3; 

0 1400c  m/s; 0,33v  ; 
95,88 10E   N/m2; 

20d  m; 1h   m; 
0 1  ; 110a  ; 410b  ; 

2z h . 

Comparison of normal stress calculations 

xx  is performed in cases where the plate is de-

scribed by the Kirchhoff model with and with-

out liquid. It is shown that taking the liquid into 

account leads to a significant decrease of the 

normal stress in the plate. Accounting for shear 

deformation significantly reduces the value 
xx  

and in addition, leads to a shift in the maximum 

values. 

6. On variational formulations without 

violation of continuity 

In most studies, variational formulations 

and asymptotic approaches of the Timoshenko 

model using the law of continuity of the me-

dium show the incorrectness of the Timoshenko 

model. Therefore, all further arguments and 

conclusions about the frequency spectra and the 

meaning of the second spectrum remain in 

question (Barbashov & Nesterenko, 1983) [15], 

(Nesterenko, 1989) [16], (Nesterenko, 1993) 

[17], (Chervyakov & Nesterenko, 1993) [18]. 

An attempt to use the mathematical method 

of asymptotic expansions taking into account 

the continuity of the medium leads to the incor-

rectness of the Timoshenko equation (Bakh-

valov and Eglit, 2005) [19]. 

7. Separation of variables in the timoshenko 

equation 

We also note the fundamental difference 

between the Rayleigh equation 

 

 

2 4
3

12 4

4
3

2 2 2
,

w w
a

t x

w
a q q

t x

 

  

 
 

 


  

 

 (16) 

including the Euler-Bernoulli equation, and the 

Timoshenko equation 
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2 4
3

12 4

4 4
3 3

2 32 2 4

2 2
2 2

1 22 2
1 .

w w
a

t x

w w
a a

t x t

d d q q
x t

 

 

   

 
 

 

 
  

  

  
    

  

 (17) 

A classic method of the variable separation 

     , ,w x t W x T t  

does not lead to the separation of variables in 

equation (17), in contrast to the complete sepa-

ration of variables in equation (16). In the case 

of harmonic oscillations, the method is applica-

ble to (16) and (17). 

8. Conclusion 

The violation of continuity in the Timo-

shenko beam equation at short wavelengths has 

been shown and discussed. It follows from the 

generalized refined equation of 4-dimensional 

Eucledian space obtained in this paper as a spe-

cial case. It was considered the conclusions 

about the incorrectness and inconsistency of the 

Timoshenko model in well-known variation 

formulations and asymptotic approaches based 

on the law of continuity. A decrease in the in-

fluence of shear deformation in the Timo-

shenko equation was noted upon contact of the 

beam-strip with an elastic base and water, as 

well as a special case of an elastic base. It was 

shown when the violation of continuity at high 

frequencies and sharp changes in the beam 

thickness the Timoshenko model is not applica-

ble. A decrease of the shear effect in the Timo-

shenko equation was shown from the solution 

of the problem for a floating elastic plate using 

the classical Kirchhoff equation and the refined 

Timoshenko equation. It was noted the inap-

plicability of separation of variables in the Ti-

moshenko equation. 
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