CALCULATION OF TEMPERATURE FIELDS AND QUASISTATIC STRESS-STRAIN STATE OF STIFFENED BY SHELL VISCOELASTIC CYLINDER UNDER UNSTEADY THERMAL LOADING

  • I. K. Senchenkov S. P. Timoshenko Institute of Mechanics NAS of Ukraine
  • О. П. Chervinko S. P. Timoshenko Institute of Mechanics NAS of Ukraine
  • E. V. Dolya Kiev National University of Construction and Architecture
Keywords: Multilayer hollow cylinder, solid fuel rocket motor, linear viscoelastic material, thermal stress state

Abstract

The article is devoted to the numerical simulation of temperature fields and the quasistatic stress-strain state of multilayer cylindrical elements of rocket motor under non-stationary temperature effects. Solid propellant rocket motor (SRM), in particular, is considered. The motor consists of a hollow cylinder propellant, supported on the side surface and the ends of a three-layer shell. The fuel material is assumed to be a linearly viscoelastic material, while the shell is assumed to be a linearly elastic material. The problem of the thermo stress-strain state of the motor with a sharp change of ambient temperature is considered. Equations of viscoelasticity for fuel are simplified by the Shapery method, with volumе deformation assumed to be elastic. In this case, the initial problem is reduced to the problem of thermoelasticity, which is solved by the finite element method using a stepwise integration scheme over time. For the demonstration version of solid propellant rocket motors, the effect of temperature difference on its surface on the deformed state was studied. Estimates are given of tensile deformations on the surface of the channel, as well as radial stresses at the fuel-insulation, insulation-corpus interface when the ambient temperature changes from 20°C to -40°C.

References

1. Москвитин В. В. Сопротивление вязкоупругих материалов. Применительно к зарядам ракетных двигателей на твердом топливе. Москва: Наука, 1972. 325 с.
2. Синюков А. М., Волков П. И., Львов А. И., Мишкович А. М. Баллистическая ракета на твердом топливе. Москва: Воениздат, 1972. 512 с.
3. Фахрутдинов И. Х., Котельников А. В. Конструкции и проектирование ракетных двигателей твердого топлива. Москва: Машиностроение, 1957. 325 с.
4. Кристенсен Р. Введение в теорию вязкоупругости. Москва: Мир, 1974. 335 с.
5. Ферри Дж. Вязкоупругие свойства полимеров. Москва: Изд-во иностр. лит., 1963. 536 с.
6. Shapery R. A. Approximate methods of transform inversion of viscoelastic stress analysis. Proc. U.S. Nath. Congr. Appl. Mech. 1962. Vol. 2. P. 1075–1055.
7. Мотовиловец И. А., Козлов В. И. Механика связанных полей в элементах конструкций. Т. 1. Термоупругость. Киев: Наук. думка, 1957. 264 с.
8. Renganahan K., Nageswara Rao B., Jana M. K. Slump Estimation of Cylindrical Segment Grains of a Typical Rocket Motor under Vertical Storage Conditions. Trends in Applied Sciences Research. 2006. Vol. 1, No 1. P. 97–104.
9. Marimuthu R., Nageswara Rao B. Development of efficial finite elements for structural integrity analysis of solid rocket motor propellant grains. Intern. Jour. Pressure Vessels and Piping. 2013. Vol. 111-112. P. 131–145.
10. Jayakumar K., Yadav D., Nageswara Rao B. A multi-layer cylindrical shell under electro-thermo-mechanical loads. Trends in Applied Sciences Research. 2006. Vol. 1, No 4. P. 356–401.
Published
2020-03-03
How to Cite
Senchenkov, I. K., ChervinkoО. П., & Dolya, E. V. (2020). CALCULATION OF TEMPERATURE FIELDS AND QUASISTATIC STRESS-STRAIN STATE OF STIFFENED BY SHELL VISCOELASTIC CYLINDER UNDER UNSTEADY THERMAL LOADING. Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences, (2), 158-165. Retrieved from http://journalsofznu.zp.ua/index.php/phys-math/article/view/266