NON-STATIONARY AXISYMMETRIC VIBRATION OF FINITE-LENGTH ELECTROELASTIC CYLINDRICAL SHELL

  • I. V. Yanchevskyi National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
  • О. А. Savchenko National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
Keywords: cylindrical electroelastic shell, non-stationary vibration, Laplace integral transform

Abstract

The numerically-analytical solution of a problem on non-stationary vibration of bimorph (metal-piezoceramic) cylindrical shell with hinged ends is presented. Modes of direct and inverse piezoelectric effect are considered. Dynamic processes are modeled within the limits of the linear theory of the thin electroelastic shells based on generalized Kirchhoff–Love hypotheses. Numerical results for stepped electromechanical loadings of the shell are presented and theirs analysis are included.

References

1. Guz A. N., Kubenko V. D., Babaev A. E. Dynamics of shell systems interacting with a liquid. Int. Appl. Mech. 2002. Vol. 38, Iss. 3. P. 260–301. DOI: 10.1023/A:1016073909775.
2. Karlash V. L. Resonant electromechanical vibrations of piezoelectric shells of revolution (review). Int. Appl. Mech. 2008. Vol. 44, Iss. 4. P. 361–387. DOI: 10.1007/s10778-008-0050-1.
3. Kubenko V. D., Yanchevskii I. V. Vibrations of a nonclosed two-layer spherical electroelastic shell under impulsive electromechanical loading. Int. Appl. Mech. 2013. Vol. 49, Iss. 3. P. 303–314. DOI: 10.1007/s10778-013-0568-8.
4. Кубенко В. Д., Янчевский И. В. Нестационарные неосесимметричные колебания цилиндрической оболочки металл-пьезокерамика. Зб. наук. праць «Методи розв’язування прикладних задач механіки деформівного твердого тіла». 2011. Вип. 12. С. 188–196.
5. Rudnitskii S. I., Sharapov V. M., Shul’ga N. A. Vibrations of a bimorphic disk transducer of the metal-piezoceramic type. Int. Appl. Mech. 1990. Vol. 26, Iss. 10. P. 973–980. DOI: 10.1007/BF00888849.
6. Янчевский И. В., Бабаев А. А. Уравнения нестационарных колебаний электроупругих конической и цилиндрической оболочек конечной длины. Вісник ЗНУ. Фіз.-мат. науки. 2017. № 2. С. 332–338.
7. Qiu J., Ji H. The application of piezoelectric materials in smart structures. Int. J. of Aeronautical & Space Sc. 2010. Vol. 11, No. 4. Р. 266–284. DOI:10.5139/IJASS.2010.11.4.266.
8. Wang H. M., Ding H. J., Chen Y. M. Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems. Int. J. Sol. and Struct. 2005. Vol. 42, Iss. 1. P. 85–102.
9. Yanchevskii I. V. Nonstationary deformation of an electroelastic nonclosed cylindrical shell under mechanical and electric loading. Int. Appl. Mech. 2013. Vol. 49, Iss. 4. P. 475–481.
10. Yang J. S. Piezoelectric transformer structural modeling – A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2007. Vol. 54, No. 6. P. 1154–1170.
Published
2020-03-03
How to Cite
Yanchevskyi, I. V., & SavchenkoО. А. (2020). NON-STATIONARY AXISYMMETRIC VIBRATION OF FINITE-LENGTH ELECTROELASTIC CYLINDRICAL SHELL. Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences, (2), 177-183. Retrieved from http://journalsofznu.zp.ua/index.php/phys-math/article/view/268