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The paper deals with the problem of determining stresses and displacements
at the points of a multilayer base consisting of orthotropic layers and coupled
to a half-space. The external loads on the top layer are known, such that the
deformation of the body becomes flat. At infinity, the stresses are zero.

This paper presents a brief review of scientific studies that highlight methods
and approaches to solving problems related to the theory of elasticity for
studying the stress-strain state of multilayer bodies, plates, plates, and strips.
The article formulates an algorithm for analytically solving the problem for a
multilayer base, in which all the basic equations of the problem and boundary
conditions are subjected to a direct Fourier transform. The stress function is
found as a solution of the analog of a biharmonic differential equation in the
space of transformants in the case of an orthotropic material.

The relationships between the stress function transformant and the stress and
displacement transformants are established. For each layer, four auxiliary
functions are introduced that are associated with the stress and displacement
transformants of points on the surface of the layers. From the conditions on
the common boundaries between the layers, recurrent relations are constructed
that express the auxiliary functions of the lower layer through the functions of
the previous layer. By expressing the four auxiliary functions for the first layer,
we can find similar functions for any layer using recurrent formulas.

After substituting the found expressions into the stress and displacement
transforms and applying the inverse Fourier integral transform, we obtain
the true values of stresses and displacements at the points of the multilayer
orthotropic base.

The proposed algorithm takes into account the peculiarities of the properties
of the orthotropic material and allows us to obtain analytical solutions of the
stress-strain state in each layer of the base.
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VY cTaTTi po3mIAIAETHCS 3a1a4a IPO BU3HAYCHHS HAIIPY>KCHB 1 MEPEMIIICHD B
TOYKax 0ararorrapoBoi OCHOBH, IO CKJIATA€THCS 3 OPTOTPOITHUX IHIAPIiB sKa
34erieHa 3 MiBIIPOCTOpoM. Bimomi 30BHIIIHI HaBaHTa)KCHHS HA BEPXHHOMY
mapi, Taki mo Jedopmaiis Tila CTae IUIOCKOr. Ha HecKiHYeHHOCTI
HAINpy>KeHHS TOPiBHIOIOTH HYJIIO.

B po6oTi HaBeIeHO KOPOTKUH OTJISIT HAYKOBHX JIOCIIKEHb, SIKi BUCBITIIFOIOTh
METOJIM Ta MiXO/H J0 BUPIIICHHS 3aB/IaHb, MIOB'I3aHUX 3 TCOPI€O MPYKHOCTI
JUISL JIOCITIJDKCHHSI HalpyKeHO-1e(OpMOBAHOTO CTaHy 0araromapoBHX Til,
TUTHT, TUTACTHH 1 CMYT.

B crarti chopmyinboBaHO anTOPUTM aHAIITHYHOTO PO3B'SI3aHHS MTOCTABICHOT
3amadi s OararomapoBOi OCHOBH, B SIKOMY BCi OCHOBHI DPIBHSHHS
3a/ladi Ta TPaHWYHI YMOBH IIJUIAFOTBCSA TMPSIMOMY TepeTBOpeHHI0 Dyp'e.
OyHKIISA HANPY)KEHb 3HAXOIUTHCS SK PO3B’S30K aHAIOTY OirapMOHIYHOTO
JU(epeHIliaIbHOTO  PIBHSIHHSA B MPOCTOPI  TpaHC(OPMAHT Ha BHIIAOK
OPTOTPOIIHOTO MaTepiaiy.

BcraHOBIIOIOTHCS B3a€MO3B'SI3KM MK TpaHC(HOpMaHTOIO (YHKINIT HATIPYKSHD
Ta TpaHc(HOopMaHTaAMH HAIIPYKEHb 1 TepeMillieHb. J{JIs KOKHOTO mapy BBEICHO
YOTUPH JIOTIOMDKHI (DYHKII, SIKi TIOB’si3aH1 3 TpaHC(OPMaHTAMH HATPy>KCHb
1 MepeMillieHh TOYOK Ha MOBEPXHI MapiB. 3 yMOB Ha CIIIBHUX MEXKax MiX
nrapamu oOy/J0BaHO PEKYPEHTHI CITiBBITHOIIICHHS, 1[0 BUPAXKAFOTh JJOTIOM1KHI
(yHKIIT HIDKHBOTO Mmapy vepe3 (GyHKINT momepenHboro mapy. Bupaxkaroun
YEeTBIPKY JOTOMDKHUX (YHKIIH JJIs TIEpIIOTo IIapy, MOXXEMO 3HaHTH
aHaJIOTTYH1 (PYHKIT JUTsl TOBUTRHOTO IIAPY 32 PEKYPSHTHUMH (POPMYIIaMH.
[Ticns mimcTaHOBKM 3HAWICHUX BHUPA3iB B TpaHC(HOPMAHTH HANpPYXKEHb Ta
MEepEeMIllIeHh 1 3aCTOCYBaHHS OOCPHEHOTO IHTETPAILHOTO TEPETBOPCHHS
®dyp’e MU OTPUMYEMO ICTHHHI 3HAYEHHS HAIPYXKCHb 1 TIEPEMIIIeHb B TOUKAX
OararomapoBoi OPTOTPOITHOT OCHOBH.

3anporoHOBaHUI  alTOPUTM  BPAaxOBYE  OCOOJNMBOCTI  BIIACTHBOCTEH
OPTOTPOITHOTO Marepiayly 1 JI0O3BOJIIE OTPUMYBATH AHAIITHYHI DIlICHHS
HaIpyKeHO-1e()OPMOBAHOTO CTaHY B KOXKHOMY IIapi OCHOBH.

Introduction. The problem of determining the stress-  ments, and foundations when structures are considered as
strain state in complex multilayer systems is relevant and ~ multilayer bodies or arrays, multilayer plates and bases,
important for many fields of science and technology.  in particular, those lying on an elastic or rigid half-space.
For example, in industrial and civil engineering, similar To date, many different methods have been devel-
problems arise in the calculation of structures, road pave-  oped for the calculation of layered structures. For
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example, in [1], a new approach (the macroelement
method) was developed to calculate the stress-strain
state of orthotropic slabs resting on an elastic Winkler
base. The authors showed that this approach provides
a more accurate solution compared to the finite ele-
ment method.

The modeling of an elastic base by the Paster-
nak equation, which gives a more realistic view of
the deformation of the base, is discussed in [2]. It
is devoted to the development of an analytical and
numerical method for solving the problem of mod-
eling the stress-strain state of layered orthotropic
plates on an elastic Pasternak base.

An assessment of mixed and classical theories on
the global and local responses of multilayer ortho-
tropic plates is given in [3]. In this paper, the authors
conclude that the application of Reisner's mixed var-
iational theorem to mixed problems of elasticity the-
ory gives an advantage in the accuracy of calculations
over the classical principle of possible displacements.

Paper [4] provides a general overview of the the-
ories, as well as an analysis of the accuracy and effi-
ciency of various theories for studying the deformed
state of laminated plates and the corresponding finite
element models. The authors have shown that glob-
al-local theories are more effective in predicting
transverse shear stresses compared to other theories
(zigzag theory, Reddy theory).

Paper [5] presents a solution to the problem of
axisymmetric torsion of a multilayer plate with elastic
connections between the layers using the method of
compliance functions and the Hankel integral transform.

The application of the Fourier integral transform
and the method of compliance functions is described
in [6; 7]. In [6], this method was applied to solve the
problem of plane deformation of an isotropic multi-
layer plate with elastic connections between the lay-
ers, and in [7], to determine the contact zone and con-
tact stresses between an isotropic strip and an elastic
half-plane.

The solution of the basic boundary value problems
of the plane theory of elasticity for a transversally iso-
tropic multilayer base by the method of the integral
Fourier transform with the construction of compli-
ance functions is given in [8].

This literature review confirms the relevance of
modeling and analyzing the stress-strain state of lay-
ered structures. It demonstrates the effectiveness of
the method of compliance functions in solving prob-
lems of elasticity theory with isotropic and transver-
sally isotropic layers, but it has not been applied to
structures made of orthotropic materials.

Therefore, the purpose of this paper is to extend
the method of compliance functions using the inte-
gral Fourier transform to solve the first basic bound-
ary value problem of plane elasticity for a multilayer
base with orthotropic layers.
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Statement of the problem. Let's consider a pack-
age of n layers that is connected to a half-space. We
call this structure a multilayer base. Each layer is
assumed to be homogeneous, weightless, orthotropic,
and characterized by a thickness h and elastic con-
stants — Poisson's ratios v and Young's modulus’s £.
The deformation of the multilayer base is plane. It is
necessary to determine the stresses and displacements
in the layers of the base if the loads on the surface are
known.

The layers in the base are numbered from top to
bottom, starting with one, with the layer that lies on
the half-space having the number n, and the half-space
being numbered 7 +1. The layer with the number 1
will be called the top layer, and the layer with the
number n will be called the bottom layer (Fig. 1a).
All values related to the layers of the bases will be
denoted by the upper or lower index & =1,n (usually
lower). For example, the thickness of the layer with
the number £ is denoted by 4, .

The materials of the layers and the half-space are
characterized by elastic constants — Poisson's ratios v
and Young's modulus’s Ef, where ne i,j=1,2,

k=1n+1.

For each layer and half-space, we introduce coor-
dinated local rectangular Cartesian coordinate sys-
tems O, X, Y, Z, (k is the layer number), as shown in
Figure 1a. All the origin of the local coordinate sys-
tems are located on a single line perpendicular to the
surface of the bases. The directions of all O, X, axes
are parallel to each other, as well as the directions of
the O,Z, axes. The local coordinate planes O, X, Z,
coincide with the upper planes of the corresponding
layer. For half-space, the local system is introduced
in the same way.

l

| fi
L |
— = >

L f2

<

—3r ¥

(@ (b)
Fig. 1. Multilayer orthotropic base

The external load f(x;),f(x) is such that the
deformation of the base and half-space is flat, so we
proceed to a two-dimensional formulation of the prob-
lem (Fig. 1b). We will assume that the movements of
the body points occur parallel to the O,X,Y; plane.

Geometric areas that occupy layers and half-space:

G, (X4, Vi ): {—0 < X, < +o0,—h < y, <0},

G

n+l

(xn+]’yn+l ): {—(1) < xn+] < +OO,—<1) < yn+] < 0} .
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For a layer with number k, the upper bound

¥, =0is described by -oo<x, <+, the lower
bound y, =-h,, —0 < X, < +o.

Boundary conditions:

1) boundary y, =0:

Gly (%,0) = £, (xl)’TLy (%,0)= £ (x); (1)

2)common boundaries between the layers
k=1n-1:
Gf} ('xk > _hk ) = I;H (xk+] ’ O) ’ ‘CI;y (-xk ) _hk ) k+1 (xk+l ) 0) )

uy (x,=h) = ui™ (x,,0),uf (X, -k ) = uy™ (x,.,,0)3(2)

y

3) common boundary of the lower layer and the
absolutely rigid half-plane:

uy (x,,-h,) = u" (x,,,,0) = 0,u) (x,,~h,) = u)" (x,,,,0) = 0;(3)
4) at infinity, k =Ln+1:
Jlim o (2o p) =0, lim of (x,»,)=0, lim < (x.,»)=0.(4)
XE+VE> X+ oo X HYi »>*

Methods. To determine the stress-strain state of
bodies, we will apply the method of one-dimensional
integral Fourier transform to the obtained stress func-
tion @(x, y) (the algorithm is described in [9]). This
method, in combination with the method of compli-
ance functions for isotropic materials, was proposed
and developed in [10; 11]. The extension of this
method to the case of an orthotropic half-plane is dis-
cussed in [12].

To determine the stress-strain state of bodies, we
will apply the method of the one-dimensional integral
Fourier transform [13] to the stress function ¢(x, y)
with variable x and transformation parameter E:

o

P& y) = fw(x y)-e¥dx, @(x, y)=— f«)(f y)-e¥xdg. (5)

The first formula defines the dlrect one-dimen-
sional integral Fourier transform for the function
o(x, v), and the second defines the inverse. The func-
tion @(& y) is called the Fourier transform of the
function ¢(x, y), for which the property [10] is true:

fa’%p(x,y) _

dxk
—00

The solution to the boundary value problem is
sought in the space of transformants of the one-di-
mensional integral transform. In this case, all the
basic equations of the problem and boundary condi-
tions are directly transformed by the one-dimensional
Fourier integral transform.

Find the solution of the analog of the biharmonic
differential equation of a plane problem for an orth-
otropic material [14], to which we apply the Fourier
integral transform:

el¥dx = (—iOk-p(&,y). (0

d*@ d*p
Al 'd_:y4_2A3€2 e

dyz A2$4 ' (p

I
A
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where
€337 C12
Ay =cp Ay =z =—"—,011 =
9

_ 1-Vyp Vg I _ 1

= »C22 = »C33 ==,
Ey Ey Gy

Coo = Con = VxytVxzVzy _ Vyx+Vzx'Vyz _ /Ex-Ey
12 — *21 — - xy — -

Ey Ex TUEY T 2o(14 Vay Vyx)

elasticity constants in Hooke's law, @ = @(§,y) —
Fourier transform on the variable x from ¢(x, y)
Let's write the transformant of the stress function

&Y k=1n+1
D2 (&) = A (8) sh(ryJay) + Baw (O)yary sh(ry,fay)
+ Coe (&) ch(ry fay) + Doy () fary ch(ry fay),

where r = [€],\/a; = \/%,k =1,n+1.
1

The stress function @, (x, y) is chosen to satisfy the
conditions exactly:

(7)

0%
ay? ’

0%k X 0%y (8)

= k = = —
¥ (xy) = ay (x,y) Froat 5 (%, y) xdy

Applying property (6) to formulas (8), we obtain:
<ﬂ2k_ (9)

TFEy) = a"’j",

afEy) = -8  EY) =i

Applying the Fourier transform property to the
formulas yyy = €337y, & = C110x — €120y we obtain
the displacement transformants u¥(¢,y), uk(E, y)'

) (0)

The boundary conditions in the transformant space
take the form:
1) boundary y =0

1’-";:%(511E(§v}’)_512‘77;'15({}’)) E €<

30 =AE, HEO=F/E; 1)
2)common boundaries between the layers
k=1n-1:
—h,) = k+1 —h,) = k+1
of (&, —hy) = €0,  E-h) =50, @)

Uy (S;f _hk) = u’,ﬁ“(f, 0), Uy (S;l _hk) = u’;“(f, 0);

3) common boundary of the lower layer and the
absolutely rigid half-plane:

(& —hy) = 0371 (E,0),  TH(E—hy) =T (4,0 =0,

(3"
ux(ft _hn) = u;H-l(fn 0) =0, uy(ft _hn) = u;/H-l(fn 0) =0;
4) at infinity, k =1,n+1:
glm ot aFEy) =0, glm EAEDE 0, lim hHEY)=0. (4")

Substituting (7) into the boundary condition for-
mulas (2'), we obtain:

o (&, —hy) = E2ch(rynfar) - (Daxfarhi — Car) — €2sh(rhy Jay)
* (Bakfahi = Az),
oF I 0) = =820 T 0) = i\ (rAg + Dy,
5y (6, ~h) = igch(rhiefay) - Az + Dudyf@ — TBaeayhy)
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— i&sh(rhefa) - ((TCzk. + By)Jay - rDzkakhk):
uk (&, —hi) = (r?CorCraz + T@Ch11 (rCok + 2Bo1) — 72 Do/ ArchicCiean

h(rhy./ } h(rh,
—T‘ZDzk\/a—khkalz) a (T /o) ish(r kaa—k)

. _ .2
(T Bo/akhiCriz + 72 Bogpnfarchycis — 72 AgicCraz

— 1y Cry1 (TAg + 2Dzk))»

—_— i
U, 0) = - (r2CorCiaz + 2 CorCrar + 27 Bok@ycCran ),

¢
u_’;i(sz' —hy) = (/@i Az + 3Dz1) — \Jai(cras — ck12) Az + Daie)
— 7By th (@Cra1 + Craz — Cksa)) - ch(rhyfax)
+ (\/a—k(ck33 — Ca2) (TCop + Bait) — @prf @1 (rCose + 3B2)
+ 1Dy ahy (ayCrir + Criz — Ck33)) . Sh(rhk\/a_k)v

As in the case of an isotropic material described
in [10, 11], we introduce auxiliary functions
ax(§), k(&) B(®), v, k=1,n-1, for each
layer, which are associated with conditions on the
boundary Yix = 0,k=1n-1.

GO =T 5.6 = ——TE
k y y=0’ k r\/ai,( xy y=0’
Bi® =%a_k-u_’;|y:0. Ye(©) = i uF| .

Considering formulas (9)—(10), we have:
8, (§) = r(rAsk + Dai), Bic(§) = 2Dy @y Crar + (@Craz + Craz — Craz) 6 (§), (1 1)
() = —ECor, V() = (WChrr + k12) " @ (§) + 2rByapcpar.  (11)

Let us express by and substitute them into the
stress and displacement transformants (9)—(10):

0 (3akCr11 + Ck1z — Cx3sz) — ﬁk _ Ve~ (s + Ck12)

Ay =

Bak

2r2ayCr11 2racri1
Ch = ay D _ Br = Sk(akCras + cr1z — Ck33) ( )
2k =~ 73 2k =
T 21 Q11

From the conditions on the common boundary
of the lower layer » and the half-plane »+1(3'), we
obtain recurrence relations that express all half-plane
functions a,,, (§), 8,.1 (&), Bsi (§).7,. () through the
lower layer functions a,(€), 3, (&), B, (&),v,(€). Let
us express o,,5,,B,,v, DY o, 8, Bisvi» k <n using a
system of two linear homogeneous equations:

ay, (p)o'k (ZS) +ap (p)Bk (E_,) +dg; (p) Yk (&) +ay (p) 3y (E.a) =0,

ay (P) oy (&) + ay (P)By (8) + ay () 14 (8) + @ () 5, (E) = 0, (14)
where ¢4,(p)=a;(p),i=12,j=14 are the corresponding
coeflicients in uy (&,-h,), uy (&-h,) at

Oy (i), 3 (é): B (&),Yk (E_‘) .
By solving system (14) with respect to B, (£),v, (€),
we obtain:

By (&) = Ac (P) o + Ay ()84, 74 (€) = B (p) oy + B (p) 5/(7(15)
where 4, (p).4, (p), B, (p), B, (p) — are the compliance
functions,

A (p) = Gi3dy — Ay 4 A, (p) = A3ty — al4a23
Ay — A3y apay; — a13a22
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B, (p)= Aty — G, B, (p)= Gaby — Ay
Ay = G130y Aply; — G130y
From the conditions of the problem, we
know the external loads on the upper layer

0, (80)=£i(¢), 1y (£0) = £,(¢), and therefore the two
functions a, (&) and §, (&) are known. Substituting
them into the formulas described above, we obtain
B,(€),v,(&). Substitute the found four into the
recurrent formulas and find o, §,, B,, v, . Theresulting
expressions of the unknown functions are substituted
into the stress and displacement transformants
and then subjected to the inverse Fourier integral
transform to obtain their true values.

Algorithm for solving the problem.

1) Find the transformant of the stress function (7)
and express the transformants of stresses (9) and
displacements (10) using the formulas.

2) Express the unknown functions
Ay (€), By (8),Cy (€), Dy (€) inthe stressand displacement
transformants through the four auxiliary functions
o, (), 8, (%), Bc (€),7 (¢), which are associated with
the conditions at the boundary ¥ =0(12)

3) Find the recurrence relations (13) from the
conditions on the jointboundaries between the layers (2)
and express B, (£),v, (&) (15) from the conditions on the
joint boundary of the lower layer » and the half-plane
n+1 (3).

4) Calculate the functions a, (§), 5,(¢) according
to the boundary conditions (I') and express the
functions B, (€),y, (¢) using the formulas (14).

5) Using the recurrent relations (13), find
o, (), 8,(€), B (&) and v, (¢) of the desired k layer
and express the stress and displacement transformants
using formulas (12).

6) The inverse integral Fourier transform (5)
is applied to the obtained stress and displacement
transforms of the layers.

Discussion. Let us make some comments on the
formulated algorithm and its individual stages. Note
that the knowledge of the compliance functions
significantly reduces the amount of calculations,
in particular, formula (15) allows us to halve the
number of functions that determine the stress-strain
state of each layer of the base. The basic functions
for the first basic boundary value problem are
(xk (¢),8,(¢). Note that the compliance functions

A (p )Ak( ),B.(p),B,(p) can be determined
for each layer at the first stage of the practical
implementation of the algorithm.

The functions o, (&),8, (¢) are calculated exactly in
some cases only when given an analytical solution. In
general, the calculation of these functions is assumed
to be performed using approximate numerical
integration formulas.

Given the known compliance functions of
a multilayer base, it is sufficient to know two
functions o, (€),5, (¢) to determine the stress-strain
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state of the k layer of the base, since B, (&),v, (&) are
determined using (15).

The key point in the implementation of the algorithm
is the calculation of integrals when applying the inverse
Fourier integral transform (5) to the stress and displacement
transforms. These integrals are supposed to be calculated
using quadrature formulas of the highest degree of accuracy.

It is worth noting that the formulated algorithm
with the necessary changes can be applied to

solving the second main boundary value problem for
multilayer foundations with orthotropic layers.

Conclusions. The paper proposes an algorithm for
analytical solution of the first basic boundary value
problem of the plane elasticity theory for a multilayer
base with orthotropic layers, which takes into account
the material features. The considered approach can be
used for numerical analysis of the stress-strain state
in each layer of the base.
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