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Key words: intelligent materials, — Due to their ability to interconnect electrical and mechanical domains,

fracture mechanics, calculation piezoelectric materials are increasingly finding applications in advanced
models, shielding effect, electromechanical systems. Notably, magneto-electric composites like
electroelasticity BaTiO3-CoFe204 have emerged as vital materials for the next generation of

devices. Exploring this realm is a complex and significant endeavor, demanding
the attention of the scientific community and further research. Over recent
decades, the scope of formulating and executing computational models for
continuous media has substantially broadened, encompassing a diverse array
of material properties and fields in computational models.

This article centers on the utilization of asymptotic analysis as a mathematical
tool for constructing approximate equations and assessing the relevance of
various hypotheses. It delves into the utilization of the perturbation method,
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pioneered by Kagadiy T. S. and others, to tackle two-dimensional contact problems in electropelasticity, particularly
in the context of materials with linear anisotropy. The extensive applicability of this asymptotic approach underscores
its efficacy in simplifying intricate problems by breaking them down into a sequence of boundary problem resolutions
grounded in the theory of potentials.

The collaborative effort of the authors in this research underscores that employing the mentioned method opens up
avenues for formulating pertinent boundary problems for the fundamental equations. This, in turn, allows for the
representation of the initial electropelasticity problem as a superposition of more manageable boundary problems.
While mechanical and electrical components can be treated separately, they still interact via boundary conditions.

To conduct a numerical analysis, the article examines scenarios where one crack surface slides parallel to the crack
front against another and selects relevant materials with known characteristics. Calculations reveal that, even in
the absence of mechanical load, crack surfaces undergo relative sliding due to non-zero electrical or magnetic
fields. The study of the shielding effect, which mitigates crack motion by altering magnetic field distribution, holds
particular significance. This effect reduces the overall stress intensity factor and impedes crack propagation.
Conducting such a comprehensive analysis is pivotal for comprehending and foretelling the strength and reliability
of structural components composed of piezoelectric and piezomagnetic materials. It is imperative to conduct a
thorough examination of the mechanisms governing their failure.
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Knruosi cnosa:
IHMeNeKmyalibHi mamepiaiu,
MexXaHiKa pyuHy8anHs,
PO3DPAXYHKOBI MOOel,
eghexm expanyeanms,
eeKmpOnPYICHICMb.

[T'e30enexkTpruuHi MaTepiaay, 3aBISKU IXHHOMY 3B'S3KY MiX €IEKTPUYHUMHU
Ta MEXaHIYHUMM TONSAMH, 3HAaXOASATh BCE OuIbIIe BHKOPUCTAHHS B
IHTEJICKTyalbHUX  EJIEKTPOMEXaHIYHUX CcHCTeMaX. MarHiToeaeKTpuyHi
komno3utd, Taki gk BaTiO3-CoFe204, cramum BaXIMBHUMH MaTrepiajJamMu
HOBOTO MOKOJIIHHS TIPUCTPOIB.

[Nourykny taHoMy HanpsIMKY JOCHTB CKJIa TH1 1 BAXKJINB1, BOHM BUMAraroTh yBaru
HAyKOBOI CIIUIBHOTH Ta MOAABIINAX JOCTKeHb. [[pOTATOM OCTaHHIX KITBKOX
JECATHIIITh MOXKITUBOCTI JuIs (pOpMYITFOBaHHS 1 peainizailii 004HCIIOBaAIBHUX
Mopesel A HEeNepepBHUX CEPEOBUIN 3HAUHO PO3IMIMPUINCS 32 PaxyHOK
OXOTIJICHHS BEJIMKOTO CIEKTpa (hi3MYHUX BIACTHBOCTEH PEUOBHH Ta MONIB B
00UHCITIOBATBEHAX MOJIEIIAX.

V 11iif cTaTTi rOIOBHY POJIb BiAIrpae aCUMITOTHYHUN aHaNi3 sIK MaTeMaTHIHUHA
IHCTPYMEHT IJIsI CTBOPEHHS HAOMIKCHNX PIBHSHb Ta OIMHKH 3HAYYNIOCTI
pi3HuX rinmores. Po3mismaeTses 3acTOCYBaHHsI METOLY 30ypEHHS, PO3pOOICHOTO
Karaniit T. C. Ta iHmUMH, A7 BEPIMICHHS JBOBUMIPHMUX KOHTAKTHHX 3ajad
CJIEKTPOIPYKHOCTI, 30KpeMa JIsl MaTepialiiB i3 MPSMOIIHIHHOK aHi30TPOITIER).
HIupokuii coekTp 3aCTOCyBaHb JAHOTO ACUMIITOTHYHOTO ITiIXOAY IEMOHCTPYE
foro e(exTHBHICTH U1 CHIPOIICHHS CKJIAMHUX 337ad, 3BOIMYM iX JIO
MOCITITOBHOTO PO3B’SI3aHHS KPaloOBHX 3a/1a4, 3aCHOBAHHUX Ha TEOPii MOTEHITIATY.
KonexTrBOM aBTOPIB JAHOTO IOCIIKEHHS TOKA3aHO, IIT0 3aBISIKH 3aCTOCYBAHHIO
BKa3aHOTO METOAY BiJKPHBAETHCS MOKIMBICTH (POPMYITIOBAHHS BiIIOBITHHUX
KpalOBUX 3a1ad Uil OCHOBHHX pIBHAHb 1 Yy TOJAIBIIOMY IPEICTaBUTH
TIOYATKOBY 3aJ1a4y €JIEKTPOINPYKHOCTI Y BUINISAI CYTIEPIIO3HIIIi OUTBII POCTUX
KpaioBux 3a1ad4. [Ipy 11b0My MeXaHI4HI Ta eJICKTPUYHI CKIaJ0BI MOXYTb OyTH
BiJIOKpEMJICHI, ajie 30epiratoTh B3a€MOIi0 Yepe3 KpalioBi yMOBH.

Jns mpoBeeHHST YHCENBHOTO aHajli3y aBTOpaMH CTarTi Oylo pO3IISIHYTO
BUIAJOK 3 KOB3aHHSAM ONHi€l MOBEpXHI TPINMHM MO IHIIMH MapanenbHO
¢bpoHTy TpimmHE Ta 00OpaHi aKTyaJdbHI ~MarepiaJu 3  BiJOMUMH
XapaKTePUCTUKAMH. 3 PE3yIIbTaTiB PO3paxyHKiB BUAHO, III0 HABITH 32 HYJILOBOTO
MEXaHIYHOTO HABaHTAXEHHS TpaHi TPINIMHU KOB3aIOTh OJHA BiTHOCHO
OJIHOT 32 PaxyHOK HEHYJIHOBHUX EJIEKTPUYHUX a00 MarHiTHUX TOJiB. Benpbmu
I[iKaBUM JJIs1 BUBUCHHS € e(DEeKT EeKpaHyBaHHS, IKUI TOM'SKIIY€E PyX TPIIIUHH
IUISIXOM 3MiHM PO3IOJILTY MarHitHoro nodjs. Lle 3MeHinye 3aranbHuil paxTop
IHTEHCHBHOCTI HaIlpy>KeHb 1 3a1100irae MOMIMPEHHIO TPIIIUHH.

IIpoBenenHss MOAIOHOTO KOMIUIEKCHOTO aHAli3y € BKpaid BaXKIMBHM JUIS
PO3yMiHHS Ta niepe0adeHHs MiITHOCT] Ta HAAIHHOCTI CTPYKTYpHHX KOMIIOHEHTIB,
BUTOTOBJICHHUX 13 IT'€30€JICKTPUYHMUX / M'€30MarHiTHUX MarepialiiB, BaXKJIHMBO
MPOBECTU KOMITJICKCHUI aHaJi3 MEXaHI3MIB 1X pyHHYBaHHS.

Introducton. Over the past few decades, there
has been a continuous and substantial expansion
in the realm of computational models focusing on
continuous media. These models have been consist-
ently evolving to encompass an increasingly com-
prehensive array of physical attributes exhibited by
substances and fields within them. A pivotal aspect
of this expansion involves the development of tech-
niques for the computation and design of intelligent
materials with the capacity to autonomously adapt
and optimize their properties. Notably, piezoelectric
materials, which exhibit a fundamental connection
between electric and mechanical fields, have found
growing utility in intelligent electromechanical sys-
tems, serving as sensors, transducers, and actuators.

In the realm of advanced materials, magnetoelectric
composites have gained significant prominence by com-
bining piezoelectric and piezomagnetic components, like
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BaTiO3-CoFe204, through ceramic or nanotechnologi-
cal methods. These composites exhibit the magnetoelec-
tric effect resulting from the interaction between these
phases, offering lightweight, strong, reliable, and environ-
mentally resistant structural elements for next-generation
intelligent devices. However, imperfections or deviations
in their production or operation can lead to meso- and
macroscopic defects, often resulting in composite failure.
Anticipating the strength and dependability of structural
components made from piezoelectric/piezomagnetic
materials necessitates a thorough examination and analy-
sis of their deterioration mechanisms, considering diverse
crack models and conditions.

Recent research has focused on fractures initiating in
piezomagnetic materials near the crack tip, particularly
emphasizing the investigation of the shielding effect.
This effect, reducing the overall stress intensity factor and
inhibiting crack propagation, is driven by the magnetic
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field distribution around the crack tip [1]. The numerical
integration considering this shielding effect encompasses
the interplay between magnetic and mechanical fields,
factoring in piezomagnetic material characteristics, crack
geometry, and applied loads. Additionally, in addressing
the limited relevance of electroelasticity to isotropic mate-
rials, there's a natural shift towards anisotropic materials,
especially active ones like piezoelectric and piezoelectric
electromagnetic materials [2]. These materials play vital
roles in electronic devices, given their ability to change
shape under electric or magnetic fields, despite their
small dimensions and exposure to significant mechanical,
electric, and magnetic forces. Furthermore, the advance-
ment in nanotechnologies, crucial for the development
of intricate magnetoelectric composites, has propelled
the exploration of magnetoelectric elastic materials. The
incorporation of the crack tip shielding effect amplifies
the significance of this research, presenting a complex
challenge that demands extensive further exploration [3].

In this study, the effectiveness of asymptotic analysis as
a mathematical tool takes center stage, enabling research-
ers to construct approximation equations and assess the
relevance of various hypotheses. Building upon the pio-
neering perturbation method developed by Shporta A. H.
et al. [4], the research proposes its application to tackle
two-dimensional contact problems of electroelasticity.
Specifically, the study focuses on electroelastic materials
characterized by rectilinear anisotropy. The broad appli-
cability of this asymptotic approach showcases its poten-
tial to streamline complex problems, demonstrating the
reduction of such challenges to a sequential solution of
boundary value problems rooted in potential theory.

Statement of the problem. Let two mutually per-
pendicular planes of elastic symmetry pass through
each point of a homogeneous anisotropic plate.
Assuming that these planes are perpendicular to the
Cartesian coordinate axes, X, y we obtain the follow-
ing equations of equilibrium, electrostatics, electroe-
lastic state, and Cauchy relations:

0 0 0
90, To g, Do O . (1)
ox oy ox oy

oD 09
an+ b _ 0 09, r _ 0 @)
ox oy oy ox

e, =sjho, +sho, + gD,
e, = SZIG +s22cs +8gxD,;
Y xy S66Txy + 8% Dy
E = _glchGX _glz c, +B7,D,; E, *ggébf +B5D, 3)
0 0 oU aV
-—; 5 Yy = 4)
0 oy ax

0
Here, o, o, (r — normal (tangential) stresses;

u,v - components of the plate displacement vector;
D, D, 1 and 9.9, — components of the induction
vector and electric field intensity; gg° — piezoelectric
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modulus of deformation and tension, measured at con-
stant induction voltages; By, — coefficients of dielectric
susceptibility measured at constant stresses; s, — coef-
ficients of deformation of the material of the body,
measured at constant induction of the electric field.

It follows from the first equation of system (2) that

there is some scalar function ¢ = ¢(x, y)such that

p-p -2,
oy’
o)

D,-p,--2.

The solution of one or another boundary value
problem can be reduced to the integration of a system
of equations under appropriate boundary conditions.

U, +eU, +emV,  —(a, —cay)d,, =0;
eV, +qV, +emU,, +eayd,, —qa,d, =0; 5)
—(ay, —eay)U,, +eayV,, qale +
+eby0,, +b11¢yy =
G v,B v, B.
£E=—), —m=1+21t=1+-L2;
B, G G
c,D oD .
a, =8 tVEy
_ ,o,D c,D . . )) c,D .
ap =8 V8 ;4 =8, tVi&i
—_ 2 s O,
by, = ay + Bzzas
B c
_ 0,D c,D 2 c
by, =g a, + 85 an?"‘BnE’
1 1

The components of the stress tensor and the stress
vector in this case are written as follows:

o, =B (U, +vV, —a,0,);
= B, (VlUx+I/y_alz¢y);
=G(Uy+Vx +a26¢x);

E =-Ba,U, - Bya,V, + Blb1|¢y§ (6)

E, = -GaU, - GayV, +Gb,..
Herecl—ﬁc, c,=9%0,, 9 =53, I =089,
9,=59,, bt b IEW,G G.5, & —is the thick-

ness of the plate The indices in equations (5) and ratios
(6) denote differentiation by coordinates; £, E,
modulus of elasticity along the main directions x,y;
G — shear modulus; v,, v, — Poisson's ratios.

The method of solving the given problem. In
real orthotropic materials, the value is a:% always
much smaller than unity. The value +-% can be con-
sidered as a small parameter during the asymptotic
integration of the system (5). This assumption can
be made because the ratio ¢-2 can be different
(g <lor g >1), but always remains greater than ¢.
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Therefore, the value ¢ will be concidered as of the
order of one.

To take into account all possible differences
between the values of the sought functions and their
rates of change along the coordinates in elastic mate-
rials, x, y affine transformations of coordinates and
sought functions are introduced

g =ae’xim =y; U=U";
V=g g =Pl (7
g =x5m, =B’y U =0,

V=V ¢=e9?. (®)

By observing transformations (7) and (8), it
becomes apparent that the solutions of the system of
equations derived from (5) and modified using these
transformations (either 7 or 8) exhibit a relatively
gradual change along the respective coordinate, in
contrast to similar solutions obtained by employing
different transformations.

The overall tangential stress is the combination
of both components. It is this stress that facilitates
the connection between these two types of stress
states. Depending on the applied load, one of them
exhibits characteristics resembling a boundary
layer.

Therefore, when subjecting piezomaterials to
mechanical loads and specifying boundary conditions
in terms of stresses, displacements, or their combina-
tions, the solutions to the respective boundary value
problems will manifest as a combination of solutions
for these two stress-strain states:

U=U" 4 U(Z); V=v®" 4 V(2); o= ¢(1) + (I)(Z) )

It is necessary to select appropriate asymptotic
sequences to look for functions,, in the form of a
power series of the parameter. The type of asymptotic
sequence is determined by the structure of equations
(5) and the order of the error ¢ in the boundary con-
ditions that occurs after solving the problem in the
zero approximation (¢ — 0). To take into account
all possible cases, we will define these functions in
the form of series by parameter &' (from transforma-
tions (7), (8) it is clear that series by lower powers of
the parameter o cannot occur)

We will also present the coefficients o and B
in the form of rows by parameter ¢"?. After split-
ting the obtained system by the &'? parameter we
arrive at an infinite system of equations concerning
the basic functions U", V', ¢ (j=0,1,...). The
auxiliary functions V|, U*/, ¢"/, ¢*/ through the
main ones are expressed by simple integration. At the
same time, we will assume that o,, ~ €,, , b,, ~ €°b;,
, a, ~ a,, ~ €'b, . We present these equations for the
first three approximations (j =0,1,2).
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When j=0:
Ug +U,) =05 gV +mU =0,

1,0 L0 _ .
-a,U;, +¢eb,¢, =0;

When j=1:
Ug'+ Uy =05 gV +mUy =0
—a, U +¢eb¢y) =05 9)
When j=2:

12 L2 10 _ 0. 1.2 12 _ 0.
U%é +Unn all¢én =0 ? ann +mU&n =0 ’
12 12 _
-a,Ug +¢b ¢, =

Here and further it is assumed that differentia-
tions (indices &, m) are performed according to those
coordinates&,, n, (n =1,2), whose indices coincide
with the first superscripts of the functions.

Aftersubstitutingtransformations(8)intosystem(5)
using the appropriate expansions and splitting by
the &2 parameter we obtain an infinite system of
equations concerning the functions V*/, V*/ ¢*/
(=0,1,...), which determine the solutions of the
second type.

It follows from system (9) that in the first two
approximations (j =0,1)the main functions U"/
(V*/ for the second stress state) are determined from
Laplace's equations (with g =1 or obvious replace-
ment of one of the variables), and the auxiliary func-
tions are expressed by simple integration over the
main ones.

In the third approximation (;-2) and further, for
the stressed state of the first type, the functions U"/
are found from the Poisson equation with the known
right-hand side, which contains only the ¢ function
found in the previous approximations. A similar situ-
ation occurs in the tense state of the second type for
the V*/ function but starting from the fourth approx-
imation U*/ and beyond.

It can be seen from relations (9), that the stress-
strain states of the first and second types are con-
nected only through boundary conditions. Since the
main functions U*/, V*/ are determined from the
Laplace (Poisson) equations, the effectiveness of the
method depends on whether it is possible to formu-
late appropriate boundary value problems for finding
these functions.

In cases where only electrical interaction is at play, the
displacement vector components will be notably lesser
compared to those in mechanical loading scenarios.

However, in instances of concurrent mechanical
and electrical (or magnetic) loading, linearity per-
mits the separate consideration of these two problems
(comprising three distinct stress states). The compre-
hensive solution can then be expressed as an aggre-
gate of solutions to individual problems. The general-
ization of the asymptotic method to two-dimensional
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problems of electro elasticity is verified for individual
model problems.

1. Let x >0 a normal concentrated force act on
the boundary of the half-plane |y| < «at the origin of
the coordinates, (O;O) there are no tangential stresses
x =0, and at infinity, the derivatives of the compo-
nents of the displacement vector turn to zero, i.e. the
boundary conditions have the form:

o, =-R3(y), (x=0), (10)

at infinity, all terms are zero. Here §()- is the Dirac
delta function.

In the first approximation, we come to the inte-
gration of equations (5) with the following boundary
conditions:

Uy, = (B / B)3() at x=0.

the derivatives converge to zero at infinity, and the
equations for the components of the induction D,
vector, D, ,and the electric field intensity £, , vector,

E, , with the boundary conditions:
I/O)c =-U,

o at x=0,
the derivatives at infinity converge to zero.
By sequentially solving the indicated boundary
value problems, we obtain
ou, __#h

ox 7En(co,’2x2+y2)’ ax

o'x ou, _ B o y

= = <

B (w[2x2+y2)

N _he vy N
ox B mn (m§x2+y2), oy

P o X

B n (3% +)7)

where o = B, /G, o =B,/G . olx

Sincet=G(U,, +%,), and AM.rore s, 700, the
boundary conditions (10) are fully satisfied.

In subsequent approximations when resolving
analogous problems, errors stemming from auxiliary
functions exhibit a higher degree of insignificance
and are consequently rectified.

If on the boundary of the half-planex > 0, |y| < o
the induction vector of the electric field at the origin
of the coordinates is given in the following form

D =gy =d8(y), D,=-¢; =d)5(y), (x=0),
then the solution of equation (2) under the specified
boundary conditions has the form

_ 1 &kx—dy)y _kd'y+d)x i = Bibu
"onk Kx+yr T 7w x4yt Gb,
In the case of the function ¢ on the boundary of

the half-plane as ¢” = ¢,3(y), (x =0)one gets

E _ Pokx
(p (xiy) Tc(k2x2+y2)’ . X
p %k o ek Kx oy

P (k2x2+y2)2 T (k2x2+y2)2'
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Other unknowns are searched for according to the
appropriate formulas.

Numerical analysis. For the numerical analysis
the materials with the following characteristics were
chosen

) =43.7-10°Pa, o _17.C . of =15.1.10° -
m V

-m

b

N - s

CZ

b

dy =0, po —165, 40 ~180.5.10°
am

¢ =42.47-10° Pa

o C
e? = —0.48%, off) 20075710 =, di =0,

b

2
K = 385% v® =414.5.10° Nc'f
The crack sliding for the electric field at the infin-
ity £ =9-10°V / m, the magnetic field at the infin-
ity H* =0 and E* =0, H* =1.7-10* A/ m and
different values of the mechanical loading at the infin-
ity ¢” [Pa] are presented in Figures 5.2a and 5.2b,
respectively. It can be seen from these Figures that
even for zero mechanical loading ¢~ the crack faces
slide with respect to each other due to nonzero elec-
tric(Fig. 5.2a) or magnetic (Fig. 5.2b) fields.

a) 8 <u3 (x1,0)>-107 [m]

oy =2-10°

=

»0.602 0.0'0 - ' 0.01
2 Xy [m]

001 -0.006

b) 8

<u3 (x1,0)>-107[m:|

-0.01 -0. [ g.01

Fig. 5.2. The displacement jump at the segment
[c,b] for EX =9-10°[V /m], H” =0 (a)
and E =0, H” =1.7-10*[A / m] (b)

Variations of the normalized stress intensity fac-
tor (SIF) K, is shown in Tables 5.1 for &%) =10° Pa,
E” =0 and different values of the relative length of
the contact zone A and magnetic fiedl H,”. It can be
seen from this Table that for each A the decreasing of
magnetic field H;” (growing it on modules) leads to
decreasing of the SIF K, and even to turning it into
zero for A =0.1 and H =-18742A4 /m. It means
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Table 5.1
Variations of the normalized stress intensity factor (SIF) K, with respect to A and H;
HOO
0 -5000 A/m -10000 A/m -15000 A/m -18742.6 A/m
A
0.1 177676.0 130277.0 82877.8 35478.5 0.0
0.2 181031.0 150716.0 120401.0 90086.0 67394.7
0.3 181731.0 160997.0 140263.0 119529.0 104009.0

that electric and magnetic fields can be used for gov-
erning of the SIF and decreasing the probability of
fracture.

Conclusions and prospects for further devel-
opment in this direction. The presented method,
employing a generalized perturbation approach for
solving electroelasticity problems, demonstrates the
feasibility of formulating boundary value problems
for key functions. This allows the original electroe-
lasticity problem to be expressed as a superposition of
simpler boundary value problems, where mechanical
and electrical components can be separated, yet they
interact through boundary conditions. This method
broadens the scope for investigating new and highly
relevant electroelasticity problems, extending the
small parameter method to two-dimensional electro-
elasticity problems. Consequently, the approach ena-
bles preliminary assessments of stress-strain states in
structures or components under different contact con-
ditions, offering analytical solutions to various practi-

cal problems. Additionally, by employing segmented
analytical functions to represent field components
along piezoelectric material interfaces, the problem
is simplified into a boundary value problem, enabling
accurate analytical solutions. These solutions form
the basis for deriving analytical expressions for stress
tensor components, electric and magnetic field induc-
tion vectors, displacement discontinuities, and elec-
tric and magnetic field potentials at specific segments
of the material interface. The outcomes are compared
across different crack models, identifying critical
parameters influencing failure under diverse loading
scenarios. Furthermore, the study explores shielding
phenomena at the interfacial crack tip within piezo-
electric materials, highlighting how the influence of
electric and magnetic fields on key field characteris-
tics surrounding the crack apex varies with the mag-
nitude of the external load. Numerical implementa-
tion for the antiplane scenario is presented in current
paper for the very first time.
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