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Key words: Successful project activities in the IT industry are determined by the extent of
IT project management, education difficulty in the team formation and implementation of projects themselves. IT
programs aimed at Master’s degree, linear  projects provide for the fulfilment of a number of tasks that are interrelated. In the
optimization, discrete optimization, system  formation of such a project, account should be taken of certain factors necessary

of constraints, combinatory method, the for its successful implementation, determination of the technology for fulfilling
Gauss-Jordan method, decomposition, intermediate tasks: consecutive or parallel, and for setting the priorities. This
reduction, graphical solution, Maple®. approach requires detailed calculation and scientifically grounded decisions. The

authors have proposed an original approach to solving discrete optimization
problems related to fundamental calculation difficulties in the process of an IT
project formation. The known methods of exact or approximate solution of such
problems are studied with account taken of their belonging to so-called P- and
NP-class problems (the polynomial and the exponential solution algorithms). The
modern combinatory and heuristic methods for solving practical discrete
optimization problems require development of algorithms that allow obtaining
approximate solution with guaranteed estimate of deviation from the optimum.
Simplification algorithms provide an efficient method of searching for an
optimization problem solution. Should a multidimensional process be projected
onto the two-dimensional surface, this will enable graphical visualization of sets
of the problem solutions. This research provides a way for simplifying the
combinatory solution of a discrete optimization problem. It is based on
decomposition of the system that represents the system constraining a
multidimensional output problem to the two-dimensional coordinate plane. Such
method allows obtaining a simple system of graphical solutions of a complicated
linear discrete optimization problem. From the practical point of view, the
proposed method allows reducing the calculation compliance of optimization
problems belonging to this class when the IT project solutions are complicated.
The approach proposed can be applied in using the obtained research result for
assuring the possibility to improve the class of problems presented by linear
equation systems. The automation of calculations in the Maple® environment
provides the basis for further development and improvement of such algorithms,
and for using in teaching a number of disciplines in education programs on IT
project management aimed at Master’s degree.

CUCTEMA CUMBOJIBHOI MATEMATUKH MAPLE® Y METO/I NPOEKIIINA 1151 3AJAY
JUCKPETHOI OIITUMI3BAIIIL

Yepuosa JI.C.

Hayionanvnuti ynieepcumem xopabnebyodysanns im. Aomipara Makaposa
Vrpaina, 54025, m. Muxonais, np. I'epoie Vkpainu, 9

Kiouosi cioBa: VYcemimHa mpoekTtHa AisutbHICT y [T Tamy3i BU3HAYaeThCA CKIIAHICTIO
ynpasninas [T mpoekTamu, ocBiTHI (hopMyBaHHSI KOMaHIIU Ta pearizalii camMux mpoekTiB. [T nmpoexTn nependavaroTh
MPOrpaMu MaricTepcbKOro OCBiTHBO- BUKOHAHHS PSy B3a€EMOIIOB’sI3aHUX 3aBaHb. IIpy (OpMyBaHHI TaKOTO MPOEKTY
kBami(ikaIiitHoro piBHs, JiHilHA CJIi/I BpaXOBYBaTH HU3KY YMHHHKIB, HEOOXIAHHUX I HOro yCHilIHOI peai3arii,
ONTUMI3allis, TUCKPETHA ONTHMI3aIlis, BU3HAYCHHS TEXHOJOTI peamizailii MNPOMIKKOBHX 3aBIaHb. TOCIIIOBHOTO
cucreMa 00MEKeHb, KOMOIHATOPHHUI METOI, HapanenbHoro i 3aBJaHHs mpioputeTHocTi. Takuil miaxix morpedye AeTaIbHUX
merox JXKopaana — "aycca, 1eKOMITO3HIIiS, pO3paxyHKiB Ta HAayKOBOOOIPYHTOBaHHMX pillleHb. ABTOPH IPOIOHYIOThH
penyxuis, rpadiunuii poss'azok, Maple®. OpHUTIHANBHUN MiIXiJ 0 PO3B’SI3KY 3a7ad TUCKPETHOI ONMTHMI3arlii, OB’ I3aHUX

i3 TIPUHIMIIOBUMH OOYHCITIOBAIFHUMHU TPYAHOIaMH B mporeci popmyBanns IT
npoekTy. Bimomi Meroam ToyHOro abo HaGIIMKEHOTO PO3B’S3KY TAKHX 3a1ad
BHBYAIOTHCS 3 YpaxyBaHHSIM HaJEXKHOCTI iX [0, Tak 3BaHMX, 3a/a4 3 Kiacy P ta
NP (anroput™u moniHOMiagbHOT Ta EKCIOHEHIIANBHOI peatizaiii po3B’si3Ky).
CyyacHi KOMOIHATOpHI Ta €BPUCTHYHI METOAM PO3B’S3KY MPAKTUUHHMX 3a/1ad
JUCKPETHOI ONTUMI3alii moTpeOyloTh PO3pOOKH AITOPHUTMIB, SIKi JI03BOJISIOTH
OTpUMYBATH HAOIMXEHMI PO3B’SA30K 13 rapaHTOBAHOIO OLIIHKOIO BiJIXUIICHHS Bij
ONTHUMYMYy. AJTOPUTMH CHpPOIICHHS € e(QeKTHBHUM NPUHAOMOM IMOIIYKY
pPO3B’sI3Ky  ONTHMi3aliiiHOT  3ajgaui. SIKIIO  BHKOHATH  MPOEKTYBAHHS
6araTOBUMIpHOTO TIpolleCy Ha JBOBHMIDHY IUIOIIMHY, TO TakKHH Npuiiom
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JIO3BOJIMTh HAOYHO BifoOpasutu B rpadiuHiil ¢opmi MHOXKHHH PO3B’S3KiB
3amadi. Y Mexax JOCTI/DKCHHS 3alpONOHOBAHO  CIIOCIO  CHPOLICHHS
KOMOIHAaTOPHOTO PO3B’SI3KY 3a4ay MUCKpeTHOI onTuMizauii. BiH 3acHOBaHHI Ha
TOMY, L0 BHUKOHYEThCS [EKOMIIO3MIIS CHCTEMH, fKa BiZoOpaskae cucremy
oOMeXeHb 0araToBUMIpHOI BHXiOHOI 3aJadi Ha JBOBHMIPHY KOOPAWHATHY
wiomuHy. Takmit croci® m03BONSE OTPHMATH INPOCTY CHCTeMy TrpadidHmx
PO3B’s3yBaHb CKJIaJHOI 3a/1adi JiHIHHOI JUCKpeTHOI onTuMizanii. I3 mpakTuaHOT
TOYKH 30py 3alpONOHOBAHMH METOJ JI03BOJISIE CIIPOCTUTH OOYHCIIIOBAIBHY
CKJIQ[HICTh ONTHUMI3aIiHHAX 3a7a4d Takoro kiacy npu cxiagaux [T mpoexkTHHX
pileHHsX. [IpUKIaJHIM aClEeKTOM 3alpPOINOHOBAHOTO MiAXOIY € BUKOPHCTaHHS
OTPHUMAaHOTO  HAyKOBOTO  pe3yJbTaTy i  3a0€3[EYeHHS  MOJMKIMBOCTI
B/IOCKOHAJICHHA TaKOTO KJIacy 3ajay, II0 OIHMCYIOThCS CHCTEMaMM JIiHIHHUX
piBHAHB. ABTOMaTH3alis po3paxyHKiB y cepenosumi Maple®  crBoproe
HEepeyMOBH JUI TOJAJBIIOTO0 PO3BUTKY Ta YHOCKOHAJICHHS HOAIOHUX
ITOPUTMIB Ta BHKOPHCTaHHS JUIl BUKJIAJaHHS psIy HpPEIMETIB B OCBITHIX

mporpaMax

ympaBniHHs [T mpoekTamMM  MaricTepchbkoro — OCBITHBO-

KBai(hiKaiitHOTO PiBHSL.

Statement of the problem

Discrete optimization problems appear in many areas
where models of current processes were formed and use
mathematical methods of their solution under the
following additional conditions: the unknowns have to
be integer in full or in part, or they have to be binary (0
or 1). The travelling salesman problem, the knapsack
problem and the assignment problem are the most
known problems of linear optimization. Nowadays,
discrete optimization has been formed as an independent
part of the theory of optimization. It uses modern
combinatorial methods and algorithms for solving
practical problems. Their application results in primary
bases of a problem, further assessment of their
optimality, improvement of bases in case of their
nonoptimality and bounds of the target function
[1,2,3,4].

As the most discrete optimization problems belong to
the NP class, it is reasonable to use problem
simplification algorithms without losing the controlled
accuracy of solution [5,6,7]. The procedure of
simplification uses the known interrelation of linear
algebraic equation systems with the system of linear
algebraic inequalities and the classic linear algebra
apparatus [8,9,10].

The principle of the method proposed consists in using

the feature of convex polyhedral area Q, provided by

a system of linear algebraic inequalities or equations in
the form of a direct sum of subspace and kernel [11].
Provided that the polyhedral kernel is two-dimensional,
an optimization problem can be reduced to a two-
dimensional one. Projections obtained enable easy
finding of the optimum solution and evaluation of
availability of an integer solution, and then of a binary
solution as well. A direct calculation means of
simplifying such class of discrete optimization problems
that are implemented by the Gauss-Jordan method in the
Maple® computer mathematics environment
[7,10,12,13].
Analysis of recent studies and publications

Mathematical models of active systems are interpreted
in many cases as discrete optimization problems
[1,2,14,15]. Development of discrete optimization
problems is associated with fundamental difficulties [2].
The known modern methods and algorithms of exact
and approximate solution of such problems are studied

with account taken of their belonging to so-called P- and
NP-class problems (the polynomial and the exponential
solution algorithms) [5].
Combinatorial and heuristic methods for exact and
approximate solving practical discrete optimization
problems take an essential place in obtaining optimum
values of such problems [1]. Realization of such
algorithms requires availability of the acceptable
primary basis of a problem, an optimality assessment
procedure and the basis improvement if nonoptimality is
the case [5,6].
The methods of discrete optimization problems solution
that have been developed by now require development
of algorithms which allow obtaining an approximate
solution with guaranteed estimate of deviation from the
optimum.
Simplification algorithms in discrete optimization
problems provide an efficient method of searching for
an optimization problem solution [16,17,18]. Should a
multidimensional process be projected onto the two-
dimensional surface, this will enable visualization of the
acceptable set (array) of the problem parameters. We
can make a lower- and an upper-bound estimate of the
problem target function values and dynamically evaluate
the possibility to diversify basis optimum variables with
guaranteed accuracy.
Solving contradictions between requirements to
completeness of modelling views in active systems and
methods of obtaining solutions of their mathematical
models is possible due to reasonable reduction of the
algorithms of complicated equation systems solution
[17]. Lack of problem solution as regards searching for
solutions in discrete optimization problems consists in
the need for developing and implementing the procedure
of simplifying the combinatorial solution of a discrete
optimization problem.

Obijectives of the article
The following objectives are determined for the
research: involving and using linear algebra standard
calculation procedures and certain linear optimization
methods to simplify the solution of multidimensional
discrete optimization problems with further visualizing
of the geometric interpretation of a linear discrete
optimization problem solution.
The following tasks were set to achieve the objectives
determined:

- to remove the class of problems that have to be
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simplified;
- to provide calculations of a modelling example.
The main material of the research

Development of simplification of the solution in
discrete optimization problems

Successful project activities in the IT industry are
determined by the extent of difficulty in the team
formation and implementation of projects themselves. IT
projects provide for the fulfilment of a number of tasks
that are interrelated. In the formation of such a project,
account should be taken of certain factors necessary for
its successful implementation, determination of the
technology for fulfilling intermediate tasks: consecutive
or parallel, and for setting the priorities. To fulfil the
task of a project content optimization, works are
analysed that have to be performed for creating a
software. In this process, the project is analysed for its
content, period for each stage implementation, costs,
risks and value. The value determining approach is
based on comprehensive characteristic of the project
results. This characteristic, in its turn, can be defined by

ISSN 2414-0287

quality of the software created as a result of the project
implementation, as well as by economic, social and
politic, environmental, technical and other effects. For
efficient calculations and avoiding fundamental
calculation difficulties in the process of an IT project
formation, evaluation of project actions in all phases of
the project lifecycle — from issuance of requirements
specifications to software installation to the customer,
the authors have developed a method reducing the
calculation compliance of optimization problems.

This research proposed the system decomposition through
projection of a multidimensional output problem onto two-
dimensional coordinate planes. This method transforms the
output problem into a group of subsystems, which enables
obtaining the system of graphical solutions of a
complicated linear discrete optimization problem. The
Maple® software environment has been involved from the
methodological and scientific points of view. Each of the
problem stages has been associated with a subprogram for
automation of calculations and visualization of solution
results (Fig. 1).

Information system of optimizing
calculation

Preparing output data

for a discrete optimization problem.

l

Adapting the system of constraints to
canonical type.

|

Gauss-Jordan calculations.

Optimization problem decomposition.
Combinatory enumeration of basis and

{

Graphic representation of projection.

{

Analysis of results obtained and
determining the optimum solution.

Fig. 1. Enlarged UML diagram of information system

For the method use visualization, we formulate a

problem on the optimum placement of N -sets AJ. ,
J :1, ---;n on the universal set U . Let each set /-\j,
J :1, .oy 11 be characterized by two scalar values: C;

-value and d; - power or weight ‘Aj‘ . At the same

time, the condition is fulfilled that the power of universal
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set ‘U‘ = B is smaller than the total power of all Aj.
Such an optimization problem consists in the need to
select a certain number of Aj from the total aggregate of

Aj , for immersion into U , the total value of which is
maximum.
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n

The total power Zaj > B is bigger than the power of
universal set, i.e. Jitlis impossible to place the complete
number of sets. U can only accommodate a part (a
number) of sets Aj. Let us enter 1 Boolean
(dichotomic or binary) variables:
y 0, AisnotplacedinU,

i =

1, AjisplacedinU, @

where ] :1,---,n
Entering binary unknowns (1) - X; = Oovli,

j=1..

W, and constraint Q, of the following optimization
problem:

N allows formulating the target function

ISSN 2414-0287

W, =c X +C,X, +...+C X, — max,

Q, ax +ax, +...+ax <B, )
X; =0vl j=12,...,n

According to the problem statement, Cj >0,

0<a <B,J=L2..,n

Such problem (2) is called in the discrete optimization
theory a one-dimensional knapsack problem. The

solution of this problem means finding among 2" n —
dimensional vectors such vector

X :[waz’

Q, and provides the maximum value to the target

o Xn], which meets the constraints

function W, (Fig. 2).

ul= c,a] [c,a,]
=1 .
@ Number
‘= <X:=[x1,x2,...,xn] |
X;=0v1
® 6
jﬁ;aj >B [c.a ]I[c.a]

Fig. 2. The problem on Aj immersion into U . (one-dimensional knapsack)

Let us consider the generalized one-dimensional
knapsack problem statement. We divide the universal set

into its own subsets U =U; WU, U...UU, with

the condition ‘Ui‘Zbi, i=12,...,m, and

m
B =Zbi The problem of immersion of sets Aj,

j:]',_"'ln into U:U1UU2 U...ULJm

interpreting AJ- as a set not just with one feature d;, but

with a whole range of d;, i=12,...,m. The

features are provided by set A= [a”]mXn The

mathematic form of such optimization problem on
placement of Aj into U =U1 UUZ U...UUm
looks as follows:

W, =c¢X +C,X, +...+C X, = max,

X +aX, .. +a X <D,
a, X +a,X, +...+a,x <bh,,

2n“"n
Q- : ®)
X <Db

m-1,n""n m-1?

a‘m—l,lxl + a'm 1, 2X2 + + a‘

a X +a, X +..+a X <b
XJZOV]., j:1,2,...,n
Account is to be taken of the fact that Cj >0,

m, j=l,2,...

following is to  fulfil:

O<aijSB,i=1,2,..., 1n- For
Vie[l,m] the
a +a,+...+a >b.

It means that it is not

possible to place all sets /-\j, J :1, S T any of the
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subsets U =Ul VU, U...UU, . The number of

n — measurable vectors X =[ Xy Xyyeony Xn] is the

solution of the problem.

Such type of problem is used to be called a one-
dimensional knapsack problem. The formulated problem
is interpreted as a problem on the optimum selection in
project management.

For implementation of n projects (/-\j, _I :1, ---;n),
certain resources are provided that are represented in the
form of a vector of resources b = [ b1’ bz, ceny bm ]T

The set A=[aq;] determines the rates of

mxn

consuming resource bj for implementation of project
Aj. The profit from implementation of project Aj is

Cj > 0. We need to choose the number of projects Aj
that allows gaining the maximum profit. Let us enter
Boolean vector X =] Xy Xy eon Xn] , where

0, project A, is not implemented,

X; =
' |1, project A, implemented,

J :11 ln .
We obtain the problem:
W, =CX " — max,

Q, : AX <b, )
X; =0vl j=12,...,n

The project management model (4) completely agrees
with the multidimensional knapsack problem (3).

At this time, we know that the given problems (3), (4)
cannot be exactly resolved. We have performed
exhaustive research of features of acceptable and
optimum solutions of knapsack problems and proposed
several algorithms [2,5] of gradual approximating to the
optimum solution. Thus, the Danzig algorithm and so-
called “greedy” procedures form the basis of heuristic
algorithms [18].

The research has proposed and exactly grounded an
approach to finding the optimum solution of a broad
class of multidimensional knapsack problems. The
principle of the method proposed consists in using the

feature of convex polyhedral area Q, provided by a

system of linear algebraic inequalities or equations in the
form of a direct sum of subspace and kernel [10, 17].
Provided that the polyhedral kernel is two-dimensional,
an optimization problem can be reduced to a two-
dimensional one. Projections obtained enable easy
finding of the optimum solution and evaluation of
availability of an integer solution, and then of a binary
solution as well.

In other words, the research proposed projecting

polyhedron Q, onto subsets of the set of basis vectors
of a linear optimization problem system of constraints.

58

ISSN 2414-0287

For special case M — N <2, where M - number of
constraints Q, , N - rank A:[aij]mxn projections

are elementary because there are two-dimensional. It is
not difficult to analyse the projection integer values array
and to solve the problem.

The first step in this algorithm is to prepare the system of
constraints for reduction. Thus, let us have a general
optimization problem in the following form:

n
W, =) c¢,x; - max,
j=1

D a;x; <b, i=1 ..., k,
Q" 3
Z:aijxJ =h, i=k+1, ..., m,
j=1
X; 20, i=1 ..l

We know that such a problem can be reduced to the
canonical form:

n
W, => ¢,x, — max,

=L

Q,:Zn:aijxj:bi, I=1...,m,
j=1
X; 20, j=1....n

The reduction is possible due to standard methods of
transformation. Thus, the equation of system of
constraints is equivalent to the system of two

inequalities:
n
> a x <b,
n - ij ] [
j=1
28 x=heqy |
j=1
—Z;aijxj <-b.
j=

Values with arbitrary sign can be represented in the form
of a difference of 2 nonnegative variables:

X, =u,-v;,, Uu;=0, v, >0.

Transition from inequality constraints to equation
constraints is made by adding the nonnegative
(balancing) variable:

n n
Dax; <b;=>ax +X,=b,
-1 -1

X . >0,

20, Q=1 ..k

Transition from maximization to minimization of the
target function and transition the other way round is used
for simpler transformation:

n n
W, ZZ;CJXJ' —max < W, :—Zl:cjxj
j= j= '

— min

In view of this, without loss of considerations generality,
let us have a linear optimization problem provided in
canonical form:
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W, =CX — max
Q,:AX =B,
X >0,

where the matrix rank of factors of the system of
constraints is equal to rank A = m.

Solving the system with the Gauss-Jordan method under
an arbitrary basis combination of variables, we obtain

projection N - of measurable output problem onto

(m_n) - measurable space. As we take into
consideration a class of problems with condition
M—N=2, we have projecting of R" onto two-

dimensional plane R?.
Let us consider a modelling example of solution based on

projecting a multidimensional process in R® onto two-

dimensional space R®.
Modelling example
Tasks: solving the optimization problem with condition

Xj > 0, j =1, ..., N.. Also obtaining a completely
integer solution and the solution under condition

X, =0vl j=12,...,n

W, =X, +8xX, +4X, + X, = max,
2X, +3X, +4X, +3X, <7,

3X, +5X, +2X, +4x, =8,

ISSN 2414-0287

We make a transition to canonical form of a linear
optimization problem

W, =X, +8X, +4X, + X, = max,
2%, +3X, +4X, +3X, + X, =7,
3X, +5X, +2X, + 4%, =8,

3X, + 3X, +5X, +4X, =6,

3X, + 95X, +3X, + 2X, + X, =8,
X, 20, j=1...6.

The system of constraints consists of four independent
equations rank(A) = 4. We move from the canonical form
of problem representation to the standard form. Such
move (projecting) is made with solving the system by the
Gauss-Jordan method. (Table 1) For the given problem
of projection R® = R?* we can perform C64 =15

ways. We choose randomized basis combination
OX,X, .
Projection onto OX; X,

As basis variables, we choose the following quadruple:
X1, X2, X5, Xe.

Q
' | 3%, +3X, +5X, +4X, =6,
3X, +5X, +3X, +2X, <8,
X, =20,x,20,%x,=20,x, =0.
Table 1

X 1 X 2 X 3 X 4 X 5 X 6 b z
2 3 4 3 1 0 7 20
3 5 2 4 0 0 8 22
3 3 5 4 0 0 6 21
3 5 3 2 0 1 8 22

w| 1 8 4 1 0 0 0
0 |-1u3| 83| 13| 1 0 5/3 | 16/3
1 53| 23| 43] 0 0 8/3 | 22/3
0 -2 3 0 0 0 -2 | -1
0 0 1 -2 0 1 0 0

w,| 0 | 19/3| 103 |- 13| 0 0 |- 83
0 0 | 136 | 13| 1 0 2 | 12
1 0 | 196 | 43| 0 0 1| 132
0 1 |[-32| 0 0 0 1 1/2
0 0 1 -2 0 1 0 0

w| 0 0 | 77/6 |- 3] O 0 -9

From the last transformation of Table 1, we have the solved system
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W =X, +8X, +4X, + X, = max,

13 1

6X+3X + X, =2,

19 4 _
O 6x+3x + X, =1,

—%x3+x2:1,

X, —2X, + X, =0,

X, 20, =1

Truncating the basis variables, we assure transition
R® = R? to two-dimensional inequalities. The
projection of six-dimensional output problem onto

W = 77x —lx +9 > max,

' 6 3

13
6

1
3
19, 4
Qi) 6273

X, <2,

X, +5X,

X, <1,

X, —2X, <0,

X, 20, x, 20,
The graphical solution is given on Fig. 3.

4 —
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®)

coordinate plane OX3X4 has the following analytical

form:

W = 77x —lx +9 — max,

6 3
13x, + 2%, <12,
19x, +8x, <6,
—3X, <2,
X, —2X, <0,
X, 20,x, 20.

OxzXy4
QO

W, =X +8X, +4X, + X, = max,

2X +3X, +4X, +3X, + X, =7,

3X, 45X, + 2X, + 4X, =8,

3%, +3X, +5X, + 4X, =6,

3X, +5X, +3X, + 2X, + X, =8,
X, 20, j=1

o U
m, 1

W, = =% %73

13x, +2x, <12,

19x, +8x, <6,

-3x, <2,

X, +9 — max,

T Qe

grad(W,) A X

X, —2X, <0,
X, 20,%, 20.

Fig. 3. Projection onto OxsX4
The solution of the system is provided in the extremal vertex coordinates
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L o6
19x, +8x, =6, 223’
X o, xw, < :
X, —2X, =0, 3
X, =55
+ 23

Other coordinates are to obtain from the solved system (5) Therefore, the optimum solution of the output problem is
equal to:

o _| 932 6 3 32
xm_[o, 23’23’23’23’0}

The biggest value of the target function is W,maX = %59

£-20><3x4 A 3 Q . . . . .
The represented 32, projection | onto Oxsxs (Fig. 2) lets us state that point (0,0) is the only integer solution

z
point of the problem. In view of this, we have the first integer optimum solution estimate Xmax = [ X1’ XZ, O, 0,].
Projection onto OX, X,

For calculation of X, X, values, we project Q, onto OxgXa.

As basis variables, we choose the following quadruple: xs, X4, Xs, Xs. We make calculations with the Gauss-Jordan
method. (Table 2).

Table 2
X1 Xo X3 X4 X5 X6 b >
2 3 4 3 1 0 7 20
3 5 2 4 0 0 8 22
3 3 5 4 0 0 6 21
3 5 3 2 0 1 8 22
w| 1 8 4 1 0 0 0
-4 -7 0 -5 1 0 -9 -24
15 2,5 1 2 0 0 4 11
-45 | -95 0 -6 0 0 -14 -34
-15 -25 0 -4 0 1 -4 -11
w,| -5 -2 0 -7 0 0 -16
- 14 1112 0 0 1 0 8/3 13/3
0 - 213 1 0 0 0 - 23 |- 13
314 | 19/12 0 1 0 0 7/3 17/3
3/2 23/6 0 0 0 1 16/3 35/3
w,| 1/4 | 109/12 0 0 0 0 1/3
From the last transformation of Table 2, we have the solved system
W =X, +8xX, +4X, + X, = max,
1 11 8
— =X+ X+ X =5,
4t 127 "* 3
2 X, +X,= 2
3 2 3 3’ (6)
. 3, .19 7
EX AT X X, =,
4t 12" "% 3
3 23 16
EXI +FX2 +X6 :g,
X; 20, j=1..6

61



Bulletin of Zaporizhzhia National University. Economic sciences. M 4 (44), 2019

It should be mentioned that it is already enough just to
have this only system for finding an integer solution.
Indeed, we ascertained from the previous projecting that

X, =0 and X, =0. In view of this, the second

system equation gives X2 21, and the third equation

gives X1 :1. Therefore, Xfm =[1, 1, 0, 0,] is the

ISSN 2414-0287

integer solution of the problem. We confirm these values
through the graphical solution of the problem.
Truncating the basis variables, we assure transition

R® = R? to two-dimensional inequalities. The
projection of six-dimensional output problem onto
coordinate plane OX1X2 has the following analytical
form:

109 1
+— X, —5 —> MmaXx,
W= 127273
21 109 1
~x+iix <8, W=gntp e g m
4 12 3
2 2 —3X1 +:|.:|.X2 332,
QIOX1X2 3 2 B 3’ P QIOX1X2 : X2921’ 19 - 28
X, +19X, < 2o,
3 X1 +—X < 7 1 2
=3 Ox, + 23x, <32,
x1+23 <16 x, >0,%, >0.
2 3
X, =20,x,>0
The graphical solution is given on Fig. 4
X, A W, = X, +8X, + 4X, + X, — max,
—> 2%, + 3%, +4X, + 3%, + X, =7,
0% o 3x, +5X, +2X, + 4%, =8,
'] 3x +3x, +5x, +4x, =6,
Vi 3X, +5X, +3X, + 2%, + X, =8,
X;20, j=1...6.
T U109 1
W, 4x1+—x -3 > max,
('04
—3x, +11x, <32,
o X, 21,
Qe
9x, +19x, < 28,
9x, +23x, <32,
'T‘ \O - 'T‘ > X, =>0,%, >0.
X
—

Fig. 4. Projection onto Oxix;

The solution of the system is the optimum vertex
X, =0,

XP o, X0, < =
9x, +23x, =32, X

2

X, =0,

32
- 23

We obtain the other coordinates from the solved system (6) The problem solution is equal to:
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0 32 6 3 32 - - - - :
Xt =10, O |. The solution obtained completely agrees with the one obtained previously,
e 23’23’23’ 23’

with projecting onto plane OxsXa.
289
23

The graphic representation shows that (1,1) is the only integer point. With account taken of the previous and the current

The biggest target function value is W,max =

z
projecting, we obtain the integer problem solution Xmax = [1, 1, O, 0,]. In this problem, the binary solution agrees
0v1
with the integer solution Xmax = [1, 1,0, O,].
Projection onto OX X,

We project Q, onto OX1X6 . In view of this, we take the following quadruple as basis variables: Xz, X3, X4, Xs. We
make calculations with the Gauss-Jordan method. (Table 3).

Table 3
X1 X2 X3 X4 X5 X6 b >
2 3 4 3 1 o 7 20
3 5 2 4 0 0 8 22
3 3 5 4 (0] 0 6 21
3 5 3 2 0 1 8 22
W, 1 8 4 1 0 0 0
-4 -7 (0] -5 1 0 -9 -24
1,5 2,5 1 2 (0] (0] 4 11
-4,5 -9,5 (6] -6 0 0 -14 -34
-1,5 -2,5 0 -4 0 1 -4 -11
W, -5 -2 0 -7 0 0 -16
- 1/4 11/12 (0] 0 1 0 8/3 13/3
0 - 2/3 1 (0] 0 (0] - 2/3 - 1/3
3/4 19/12 (0] 1 0] (0] 713 17/3
3/2 23/6 (0] 0 (0] 1 16/3 35/3
W, 1/4 | 109/12 (6] (0] 0] (0] 1/3
- 14/23 0 (0] 0 1 - 11/46 32/23 71/46
6/23 0 1 0 0 4/23 6/23 39/23
3/23 (0] (0] 1 (0] - 19/46 3/23 39/46
9/23 1 (0] (0] (0] 6/23 32/23 70/23
W, |- 76/23 0 (0] (0] (0] - 109/46 | - 283/23

From the last step of Table 3, we have the solved system

W =X, +8X, +4X, + X, &> max,

111 _32
235 T35 T X o3
6. 4 6
X e X+ X,
o 235 T 3% X% =53 .
3. 19 3
2354 % TR T 03
9,.6 _32
235 3% T X =53
X, 20, x, 20.

Truncating the basis variables, we assure the transition projection of six-dimensional problem onto coordinate

6 2 - - . .
R”> = R® to two-dimensional inequalities. The plane OX1X6 has the following  form:
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76, 109, . 283
Wi =28% g %o+ o3 > Max,
14 11 32 w /6, _109 . 283
'%Xl—EXG-I-XS:%’ I 23 46X + 23 — Mmax,
- 28x, —11x <64,
QX +iX + X, -6 ' i
o) BB ~ 23 o) I4F26S8
8y 19, 3 "7 6x,-19x, <6,
237" 46 ES 9x, +6X, <32,
9,.6 _32 x, >0, x. >0.
23X +23X + X, 23’ 1 1 Rg
X, 20, x, =20,
The graphical solution is given on Fig. 5.
XeA W, = X, +8X, +4X, + X, — max,
—> 2% +3X, +4X,+ 3%, + X, =7,
Q 3X, +5X, + 2X, +4X, =8,

3%, +3X, +5X, + 4X, =6,
3X, +5X, +3X, + 2%, + X, =8,
X;20, j=1

U

_76, 109, . 283
W, = 23xl 46x+23—>max

- 28x, —11x, <64,

grad(w,)

y N N Qo - 3%, +2x, <3,
N N N ' 6x, —19x%, <6,
N 9x, +6Xx, <32,
A X N\ o X, >0, X, >0.
O 1 -

Fig. 5. Projection onto OxiXs

The optimum solution is in the point of origin of
coordinates

X =[0,0].

The other coordinates can be obtained from the solved
system ©) We have:
o [ 0,32 6 3 32 o] 1he o
X oo [023 23’ 23' 23"’ O}' ® Soen

obtained is equal to the ones obtained previously,
projections onto plane Oxsxs and OxiX».

The biggest value of the target function is
W _ 289
! 23

The software implementation of a linear optimization
problem reduction is an important component of the
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algorithm of such reduction proposed. This step has been
realized in the environment of the Maple® symbolic
mathematics software package. A program has been
developed that provides automation of calculations using
the procedure proposed. The program includes two units:
- selection of a basis variables combination and
solution of the system of constraints with the Gauss-
Jordan method;

- three-level optimization calculation (XjZO,
X, 20, X, 20, x,20  and
X; =0v1 j=12,...,n) with

standard subprogram library.
A program code fragment is given below.

integers,

using the
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eql:=2*x[1]+3*x[2]+4*x[3]+3*x[4]+x[5]=7:

eq2:=3*x[1]+5*x[2]+2*x[3]+4*x[4]=8:
eq3:=3*x[1]+3*x[2]+5*x[3]+4*x[4]=6:

eqd :=3*x[1]+5*x[2]+3*x[3]+2*x[4]+x[6]=8:
HUAHAHGHHAH AR GRBRH AR GRHHH AR GR SR H ARG H RS

#H#HHHH
W[I]l=zf-max;
eql;eq2;eq3;eq4;
x[j]>=0;

wwl:=solve({eql,eq2,eq3,eqd}, {x[3],x[4],x[5],x[6]1});

oml :=-coeff (rhs (wwl[1l]) ,x[1l])*x[1l]-coeff(rhs(wwl[l]) ,hx[2])*x[2]<=
rhs (wwl[1l])+ (-coeff(rhs(wwl[1l]) ,x[1])*x[1]-

coeff (rhs(wwl[1l]) ,x[2]) *x[2]):

om2:=-coeff (rhs (wwl[2]) ,x[1])*x[1]-coeff(rhs(wwl[2]) ,x[2])*x[2]<=
rhs (wwl[2])+ (-coeff (rhs(wwl[2]) ,x[1])*x[1]-

coeff (rhs (wwl[2]) ,x[2]) *x[2]) :

om3:=-coeff (rhs (wwl[3]) ,x[1l])*x[1l]-coeff(rhs(wwl[3]) ,x[2])*x[2]<=
rhs (wwl[3])+ (-coeff (rhs(wwl[3]) ,x[1])*x[1]-

coeff (rhs (wwl[3]) ,x[2]) *x[2]):

om4d :=-coeff (rhs (wwl[4]) ,x[1])*x[1l]-coeff(rhs(wwl[4]) ,x[2])*x[2]<=
rhs (wwl[4])+ (-coeff (rhs (wwl[4]) ,x[1]) *x[1]-

coeff (rhs(wwl[4]) ,x[2]) *x[2]) :

zf:=subs ({x[3]=rhs (wwl[1l]) ,x[4]=rhs(wwl[2])},6z£f):

W[I]=zf-max;
oml;om2;om3;om4;
sort(x[1]>=0) ,sort(x[2]>=0) ;

pl:=inequal( [oml,om2,om3,om4,x[1]>=0,x[2]>=0], x[1]=-1.

.7, x[2]=-

1..7,optionsexcluded=(colour=white),
optionsfeasible=(colour=green, thickness=1)) :

display( pl);

The results obtained within the research have allowed
widening the educational content of disciplines taught
within the boundaries of the educational program
“Project Management”. For instance, the content of
discipline “Mathematical Models and Methods in Project
Management” includes materials from such basic areas:
linear models and linear optimization, discrete
optimization, elements of the game theory. All the areas
require computer modelling and IT projecting. In view of
this, the proposed approach of automating optimization
problems calculations is used in the educational process
of training students aimed at Master’s degree.

Conclusions

The proposed approach to simplification of combinatorial
solution of a discrete optimization problem has
significant advantages over the known methods of the
optimum solution determining — the simplex method or
the artificial basis method. The actually performed

decomposition of the system reduces the dimension of
the equation system to be solved. Projection of the
multidimensional system of the output problem onto the
two-dimensional coordinate plane allows obtaining a
simple system of graphical solutions for a complicated
linear discrete optimization problem. From the practical
point of view, the approach proposed enables reduction
of compliance when calculating optimization problems of
such class, and the software implementation allows
including this class of problems into educational projects.
The scientific result obtained makes researchers arriving
at the conclusion that in the general case, it is not
necessary to search for solution in all the projections. It is
enough to find the solution just in one projection.

The applied significance of the approach proposed
consists in using the obtained result to assure the
possibility of improving complicated systems described
by linear equation systems with linear constraint systems
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included. Multivalued combinatorial projections cause
the possibility of changing the range of problem
parameters. The research has proposed projecting a
multidimensional optimization process onto the two-
dimensional plane.

Such method of simplification can only be applied to
adapted classes of problems. The m rank of the matrix of
factors of the system of constraints for a linear discrete
optimization problem has to meet the condition n-m=2,
where n — the problem dimension. It is reasonable to
generalize such projecting onto three-dimensional space.

ISSN 2414-0287

1. It has been shown that solving a linear optimization
problem is possible due to simplifying through
decomposition of the system by means of building
projections of the multidimensional system of the output
problem onto two-dimensional coordinate planes.

2. It has been confirmed on the example of solving a
standard model problem that the approach proposed
enables obtaining a simple system of graphical solutions
of a complicated linear discrete optimization problem.
The result obtained allows the researchers to arrive at the
conclusion that in the general case, it is not necessary to

search for the solution in all the projections. It is enough

to find the solution just in one projection.
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